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1. introduction

It wasn’t obvious to the Greeks that there are numbers that couldn’t be written as a ratio
of two integers. Pythagoras and his followers were deep admirers of numerical ratios and
studied their existence in the world, as they arose in music, geometry, cosmology, and the
body. In fact, they believed that all numbers could be represented as a ratio — what we call
a rational number — and the existence of an irrational number was seen as an affront to
the gods [oA30, p64]. Legend says that in 470 B.C. when Hippasus proved the irrationality
of

√
2, he was drowned for spreading such absurd truths! [Ang94, p35]

In this paper we’ll discuss how we can rigorously think of these crazy irrational numbers
as a sequence of the more familiar rationals, using a process called completion of a metric
space. By defining different metrics on Q we can obtain more exotic number systems, such
as the p-adics. Not only do irrational numbers such as

√
2 appear in the p-adics, but we can

also find solutions to equations such as f(x) = x2 + 1, which have no real solutions!

2. Mathematical Background

2.1. Construction of the Real Numbers. First we want to discuss how one can construct
the set of real numbers by completing the rationals.

When dealing with a set of numbers, we often want to have a way to measure the distance
between two of them. This desire introduces the notion of a metric.

Definition 2.2. [Rud76, Def 2.15] Let M be a set. A function

d : M ×M → R

is a metric if for all (x, y) ∈ M ×M we have:

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y
(2) d(x, y) = d(y, x) for all x, y ∈ M
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M

We define a metric space (M,d) to be a set of elements M equipped with a metric d.

Example 2.3. In Q, we usually define the metric as the Euclidean Distance: d(x, y) = |x−y|
for all x, y ∈ Q. Notice the Euclidean metric on Q takes on values only in Q rather than all
of R.

Certain quantities, such as the solutions to the equation x2 = 2 or the circumference of a
circle of diameter 1, cannot be written as a ratio of integers. However, we can think of these
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quantities as a limit of rational numbers approximating them arbitrarily well. Formally, we
can think of a real number as the limit of a Cauchy sequence of rational numbers:

Definition 2.4. [Rud76, Def 3.8] Let (M,d) be a metric space. The sequence (an) ∈ M
is Cauchy if for all ϵ > 0 there exists positive integer N such that if m,n > N then
d(am, an) < ϵ.

For example, we can think of the real number π as (the limit of) this Cauchy sequence of
rationals:

(3, 3.1, 3.14, 3.141, 3.1415, 3.14159, ...)

Notice, that this is not the only Cauchy sequence converging to π. We could also write
(3, 3.14, 3.1415, 3.141592, ...). This motivates the idea of equivalent Cauchy sequences:

Definition 2.5. Two Cauchy sequences (an) and (bn) are called equivalent if d(an, bn) → 0
as n → ∞.

One can verify that Definition 2.5 is in fact an equivalence relation by checking reflexivity,
symmetry, and transitivity. Now, we can define the completion of a metric space:

Definition 2.6. [Rud76, Def 3.12] A metric space (M,d) is complete if every Cauchy se-
quence in M converges to a unique point in M .

Given any metric space, there is a natural way to complete it to obtain a complete metric
space.

Definition 2.7. [Kat07, Thm 1.1] Let (M,d) be a metric space. The completion (M̂, d̂)

is the set of all equivalence classes of Cauchy sequences of elements in M . The metric d̂
between two equivalence classes represented by (an) and (bn) respectively is defined to be:

d̂((an), (bn)) = limn→∞d(an, bn).

Implicit in the statement of Definition 2.7 is the fact that the metric d̂ is not dependent
on the choice of representative for each equivalence class of Cauchy sequences [Kat07, Ex.
18].

The set M lives naturally inside M̂ . Formally, we can define the map

f : M → M̂

which sends any element x in M to the constant sequence (x, x, x, x, ...). Thinking of M as
existing inside of M̂ in this way, M is dense in M̂ [Kat07, Thm 1.1].

This process of completion can be applied to Q to obtain R by using the standard Euclidean
metric. For example, the Cauchy sequence (3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . ) has no
limit in the rationals. However, it is a representative for the equivalence class of Cauchy
sequences of rational numbers which we can identify with the real number π.

Note that a complete metric space is equal to its completion [Kat07, Prop1.3].
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2.8. Completion of Fields. Completion often respects arithmetic operations such as ad-
dition and multiplication, but in order to formalize this we must define a normed field.

Definition 2.9. [Kob84] A Normed Field is a field X equipped with a notion of size, or
norm, i.e. there exists a map from X to R, x → ∥x∥, such that:

(1) ∥x∥ ≥ 0 for all x ∈ X
(2) ∥x∥ = 0 if and only if x = 0
(3) ∥xy∥ = ∥x∥∥y∥ for all x, y ∈ X
(4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ for all x, y ∈ X

Example 2.10. The field Q has the familiar Euclidean norm which is just the absolute
value: ∥x∥ = |x|

Proposition 2.11. Normed fields have an induced metric structure: d(x, y) = ∥x− y∥.

Proof. To verify that d(x, y) is indeed a metric, we simply need to verify the properties in
Definition 2.2. Take x, y, z ∈ X. Then:

(1) d(x, y) = ∥x− y∥ ≥ 0.
(2) d(x, y) = ∥x− y∥ = 0 if and only if x− y = 0 ⇐⇒ x = y.
(3) d(x, y) = ∥x− y∥ = ∥ − (y − x)∥ = ∥ − 1∥∥y − x∥ = ∥y − x∥ = d(y, x).
(4) d(x, y) = ∥x− y∥ = ∥(x− z) + (z − y)∥ ≤ ∥x− z∥+ ∥z − y∥ = d(x, z) + d(z, y).

□

Example 2.12. Using the Euclidean norm on Q, we obtain the induced metric d(x, y) =
|x− y|. This is the usual Euclidean distance.

Theorem 2.13. [Kat07, Thm 1.19] Let M be a normed field, and consider M as a metric
space with the induced metric d(x, y) = ∥x− y∥. Then the completion M̂ is also a field.

Proof. The elements of M̂ can be represented by Cauchy sequences, so for any (an), (bn) ∈ M̂ ,
we can define component wise addition and multiplication:

((an) + (bn)) = (an + bn) and ((an) · (bn)) = (an · bn).

These operations can be checked to be independent of the choice of representatives. The
completion M̂ forms a commutative ring under these operations with the additive identity
0 = (0, 0, 0, . . . ) and multiplicative identity 1 = (1, 1, 1, . . . ). To prove M̂ is a field, we need
to find an inverse for any non-zero Cauchy sequence (an) ∈ M̂ . Let (an) be any non-zero
Cauchy sequence in M̂ . Non-zero Cauchy sequence means (an) is not equivalent to the
constant sequence (0, 0, . . . ), i.e. there exists integers c,N > 0 such that

∥an∥ > c for all n ≥ N.

Now define the sequence (an)
−1 as:

(an)
−1 =

{
0, if 1 ≤ n ≤ N − 1
1
an
, if n ≥ N
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This sequence (an)
−1 is indeed Cauchy: Take ϵ > 0 and n,m ≥ N , then

∥a−1
n − a−1

m ∥ = ∥ 1

an
− 1

am
∥ =

∥am − an∥
∥am∥ · ∥an∥

≤ c−2∥am − an∥ < c−2 · ϵ

because (an) is Cauchy.

Furthermore, the product of the Cauchy sequences (an) and (an)
−1 is:

(an)(an)
−1 =

{
0, if 1 ≤ n ≤ N − 1

1, if n ≥ N

which is equivalent to the constant Cauchy sequence (1, 1, 1, ...), the multiplicative identity.
□

As an example, because Q is a normed field, the completion of Q with the Euclidean
metric, namely R, is a field as well.

But there are many different ways to think about the distance between two numbers which
give rise to whole new number systems, with similar algebraic properties.

3. Construction of the p-adic numbers

The most natural way we, as humans, define the distance between two numbers is the
Euclidean metric d(x, y) = |x− y| as it corresponds to the distance between x and y on the
real number line. As we have seen, we can use this metric to complete Q into the field of
real numbers R. But what if we define a different way to describe the distance between two
rational numbers?

Definition 3.1. Let p be prime, x ∈ Q.

valp(x) =

{
highest power of p which divides x, x ∈ Z
valp(a)− valp(b), x = a

b

The p-adic valuation of 0 is defined to be ∞.

Proposition 3.2. valp(xy) = valp(x) + valp(y) for all x, y ∈ Q

Proof. Without loss of generality we can assume x, y ̸= 0 so their p-adic valuations are finite.
Let valp(x) = n and valp(y) = m so we can write x = a

b
· pn and y = c

d
· pm where p does

not divide a, b, c, or d, and m,n ∈ Z. Then xy = ac
cb

· pn+m hence valp(xy) = n + m =
valp(x) + valp(y). □

This p-adic valuation allows us to define the following norm on the rationals:

Definition 3.3. The p-adic norm on Q is

|x|p =

{
1

pvalp(x)
, x ̸= 0

0, x = 0.

One can verify that |x|p is indeed a norm:
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(1) Positive definite follows directly from the definition of the p-adic norm.
(2) Multiplicativity: |x · y|p = 1

pvalp(xy)
= 1

pvalp(x)+valp(y)
= 1

pvalp(x)
· 1
pvalp(y)

= |x|p · |y|p
(3) Triangle inequality: without loss of generality, we can assume x, y ̸= 0. Let

x =
pn · a
b

and y =
pm · c
d

where p ̸ | a, b, c, d. We will assume 0 ≤ m ≤ n because if n,m < 0 we can multiply
x and y by sufficiently large power of p to obtain x′, y′ such that their exponents are
positive, from which the same argument will hold because the norm is multiplicative.
Now:

x+ y =
pm(ad+ bcpn−m)

bd
Hence:

|x+ y|p ≤
1

pm
= max(

1

pm
,
1

pn
) = max(|x|p, |y)p) ≤ |x|p + |y|p

By Proposition 2.11, this norm induces the following metric on Q:

dp(x, y) = |x− y|p for all x, y ∈ Q.

Remark 3.4. Since we showed that |x + y|p ≤ max(|x|p, |y|p), the p-adic norm satisfies a
stronger triangle inequality, making it a non-Archimedean norm. [Gou20, Def 2.1.1].

From now on we will let p be a fixed prime. Our goal is to complete Q with respect to the
p-adic metric.

Example 3.5. Let (an) = (
∑n

k=1 p
k) be the sequence of rational numbers:

(p, p+ p2, p+ p2 + p3, p+ p2 + p3 + p4, . . . )

Using the p-adic metric we can verify that (an) is in fact Cauchy. Assuming n > m we
have:

d(an, am) = |pm+1 + pm+2 + · · ·+ pn|p
= |pm+1(1 + p+ p2 + · · ·+ pn−m−1)|p

=
1

pm+1
→ 0 as m → ∞.

Clearly, with the Euclidean metric, the sequence in Example 3.5 is not Cauchy because it
does not converge. However, with the p-adic metric, the sequence (an) is Cauchy.

Similarly to how we constructed R from Q by completing the field Q with respect to the
Euclidean metric, we can now define a p-adic number to be an equivalence class of Cauchy
sequences under the p-adic metric.

Definition 3.6. The set of all equivalence classes of Cauchy sequences under the p-adic
metric is the field Qp of p-adic numbers. The field Qp is the completion of the normed field
Q using the p-adic metric.
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We can extend the p-adic norm |α|p defined in Definition 3.3 for any α ∈ Qp to be:

|α|p = lim
n→∞

|an|p

where (an) is a Cauchy sequence of rationals representing α. Likewise, the p-adic metric on
Q extends to Qp as in Definition 2.7.

Note that the range of |α|p is the discrete subset {pn, n ∈ Z} ∪ {0} ⊆ Q. Contrast this
with the Euclidean norm on Q which took on values in Q, and the Euclidean norm on R
which took on all non-negative values in R.

The p-adic numbers are complete in the following sense: every Cauchy sequence (using
the p-adic metric of course) converges to a point inside Qp. Hence our sequence (an) from
Example 3.5 is a representative for the equivalence class of Cauchy sequences representing
the p-adic number:

∑∞
k=1 p

k. However this number is not rational, hence Q is not complete
with respect to the p-adic metric.

3.7. p-adic Integers.

Definition 3.8. [Kob84, p13] We define a p-adic integer to be an element α of Qp such that
|α|p ≤ 1.

We denote the set of all p-adic integers by Zp. Just as the integers Z are a sub-ring of Q,
the p-adic integers Zp are a sub-ring of Qp. Indeed, we already know Zp is a subset of the
field Qp, so it suffices to verify that Zp is closed under addition and multiplication. This can
be done using the properties of a norm. [Kob84, p13].

Remark 3.9. The units in Zp are all u ∈ Zp such that |u|p = 1, i.e. valp(u) = 0. This
follows from the multiplicative property of norms:

|u|p · |
1

u
|p = |u · 1

u
|p = |1|p = 1,

Since |u|p = 1, we see also that |1/u|p = 1 so the inverse of u lies in Zp. That is, u is a unit
in Zp.

Remark 3.10. We can uniquely write any p-adic number α = u · pm where u is a p-adic
unit and m ∈ Z. Now, |α|p = 1/pm.

Recall that the definition of a p-adic number is actually an equivalence class of Cauchy
sequences of rationals. This means that many different sequences can be used to represent
the same p-adic number! To make things easier for notation, let us define a canonical p-adic
representative for the equivalence class of any p-adic integer α.

Theorem 3.11. [Kat07, Thm 1.30] Let α be a p-adic integer. Then there exists exactly one
representative Cauchy sequence (an) such that for n = 1, 2, ...:

(1) an ∈ Z for 0 ≤ an < pn

(2) an ≡ an+1 (mod pn)

Using Theorem 3.11 we can see that a p-adic integer can also be defined as follows:
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Definition 3.12. [Lan02, p51] A p-adic integer can be defined as a sequence of residues:

a1 mod p, a2 mod p2, a3 mod p3, . . .

with each an congruent to its predecessor mod pn−1. (Equivalently, each an maps to an−1

under the natural quotient maps Z/(pn+1) → Z/(pn).)

Indeed: condition (1) in Theorem 3.11 guarantees that when we choose the residue class
representative in Definition 3.12, we can always pick the unique representative between
0 and pn − 1 to obtain the unique Cauchy sequence of integers (the so-called canonical
representation of α). Condition (2) ensures each an+1 maps to an as needed.

Example 3.13. Consider the sequence of integers beginning with
(3, 10, 108, . . . ).

This sequences represents the first 3 terms of the canonical representative for some equiva-
lence class of Cauchy sequences in Z7 because it satisfies conditions (1) and (2) in Theorem
3.11. Therefore it represents a 7-adic integer α. Using the notation in Definition 3.12,

α = (3 mod 7, 10 mod 72, 108 mod 73, . . . ).

Similarly, the sequence (4, 39, 235, . . . ) is the canonical representative of a 7-adic integer:

β = (4 mod 7, 39 mod 72, 235 mod 73, . . . ).

Using the ring structure on Z7, we can add α + β to obtain another 7-adic integer:
(7 mod 7, 49 mod 72, 343 mod 73, . . . )

which has the canonical Cauchy sequence (0, 0, 0, . . . ), the zero element of Z7. Hence, α and
β are in fact additive inverses in Z7!

3.14. Canonical Representation of a p-adic Number. Now we have the tools to repre-
sent any p-adic integer using a canonical base p expansion.

For any p-adic integer, Theorem 3.11 says there exists a unique Cauchy sequence (an) =
(a1, a2, a3, . . . ) representing α and such that conditions (1) and (2) hold. More conveniently,
we can write each term an ∈ Z using base p expansion:

an = d0 + d1p+ · · ·+ dn−1p
n−1

where each dn ∈ {0, 1, 2, . . . , p − 1} ⊆ Z are called the p-adic digits. Since an+1 ≡ an (mod
pn), we have that

an+1 = d0 + d1p+ · · ·+ dn−1p
n−1 + dnp

n

with the same p-adic digits d0 through dn−1 as for an. Hence

(1) α =
∞∑
n=0

dnp
n

where each dn are the p-adic digits of α. The sequence of partial sums
(d0, d0 + d1p, d0 + d1p+ d2p

2, d0 + d1p+ d2p
2 + d3p

4, . . . )

is the canonical Cauchy sequence representing α guaranteed by Theorem 3.11. Because Qp

is complete, it converges to the p-adic number α. If the digits di are chosen between 0 and
p− 1, then this expression is unique.
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Example 3.15. The canonical representation of the multiplicative identity 1 ∈ Qp is:

(1, 1 + 0p, 1 + 0p+ 0p2, . . . ).

Borrowing notation from the decimal expansions of real numbers, we can write any p-adic
integer in base p with digits extending infinitely far to the left:

α = [. . . dn . . . d3d2d1d0.]p

In this notation, each dn is the same p-adic digit as in the canonical sequence representation
(equation 1) of α.

There are two cases to consider when trying to write down some α ∈ Qp as a "p-adic
decimal" expansion: |α|p ≤ 1 and |α|p > 1. The first case is when α is a p-adic integer,
handled by Theorem 3.11. For α that are not p-adic integers, we need the following trick:

Remark 3.16. If α ∈ Qp such that α is a p-adic integer, i.e. α =
∑∞

n=0 dnp
n = [. . . d2d1d0]p,

then multiplying α by pm will move the decimal point m digits to the right because:

α · pm =
∞∑
n=0

dnp
n+m

= 0 + 0 · p+ 0 · p2 + · · ·+ d0 · pm + d1 · pm+1 + d2 · pm+2 + . . .

= [. . . d2d1d00 . . . 0]p.

Hence we can reduce to the case where α is a p-adic integer by multiplying α by an
appropriate power pm. Now we can write:

α = . . . dn . . . d2d1d0.d−1 . . . d−m

as a fraction in base p with infinitely many p-adic digits to the left and finitely many (m)
digits to the right (d−m ̸= 0).

Remark 3.17. If the canonical expansion of α contains digits only to the left of the point
(i.e. only non-negative powers of p), then α is a p-adic integer.

Example 3.18. Take 79 ∈ Z3 ⊆ Q3. Using Definition 3.12,

79 = (1 mod 3, 7 mod 9, 25 mod 27, 79 mod 81, 79 mod 243, . . . ).

Using the canonical expansion as in Theorem 3.11,

79 = (1, 1 + 2 · 3, 1 + 2 · 3 + 2 · 32, 1 + 2 · 3 + 2 · 32 + 2 · 33, . . . ) = [. . . 02221]3

.

Example 3.19. Now take 79
3
∈ Q3.

79

3
= 1 · 3−1 + 2 · 30 + 2 · 31 + 2 · 32 + 0 · 33 + · · · = [. . . 0222.1]3

Notice how the decimal moved one place over to the left.
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4. Comparison of R and the p-adics

4.1. Decimal Expansion. Any p-adic number α ∈ Qp can be represented as the infinite
power series

α =
∞∑

n=−m

dnp
n

where d−m ̸= 0 and each dn ∈ {0, 1, ..., p − 1} ⊆ Z represents the infinite p-adic digits of α
when written in base p. This infinite power series converges (in the p-adic sense) to

α = [. . . d2d1d0.d−1 . . . d−m]p.

Similarly, any real number can be represented as an infinite power series of 1/10. Take any
real r ∈ [0, 1] so we can write r = 0.a1a2a3a4 . . . where each ai ∈ {0, 1, ..., 9}. The infinite
power series

∞∑
n=1

an
10n

converges (using the Euclidean metric on Q) to the real number r = 0.a1a2a3a4 . . .

However, note that we do not obtain uniqueness in the reals when using infinite decimal
expansion. For example:

1.0000 · · · = 0.999 . . .

4.2. Recognizing Rational Numbers. Both the set of rational numbers and the set of
integers exist naturally inside Qp.

Proposition 4.3. If non-negative a ∈ Q has denominator a power of p, then the p-adic
decimal expansion of a terminates.

Proof. If a ∈ Z, then the denominator has a power p0 = 1. Hence, Definition 3.12 gives
us that any a ∈ Z can be represented with the Cauchy sequence of integers (an) = (a mod
pn) = (a mod p, a mod p2, . . . , a mod pn, . . . ). This Cauchy sequence representing the
integer a ∈ Z will eventually look like (. . . , a, a, a, . . . ) as soon as pn > a. So for large
enough n, this sequence will become constant. Writing a in the base p expansion, eventually
the p-adic digit dn = 0 for all n. Dividing a by a power of pm gives us the rational number
a
pm

. Since the decimal expansion of a eventually terminates, and dividing by pm only moves
the decimal place over m digits (Remark 3.16), then the p-adic expansion of the rational a

pm

will also terminate (see Example 3.19). □

Hence, one can recognize a real integer (i.e. an element of Z) among the p-adic integers
by a finite number of p-adic digits and only 0s to the right of the decimal (see example 3.18).

To recognize a real rational (i.e. an element of Q) among Qp whose denominator is not a
power of p, we have the following theorem:

Theorem 4.4. [Kat07, Thm 1.38] The canonical p-adic expansion represents a rational
number if and only if it is eventually periodic to the left.
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Example 4.5. Take 1/2 ∈ Q3. To find the canonical sequence of an’s as defined in
Theorem 3.11, each an should be something mod 3n that after doubling it is 1 + 3n:
(2, 5, 14, 41, 122, . . . ). Writing in 3-adic decimal expansion, we can see that it is eventu-
ally periodic:

1

2
= 2 + 1 · 3 + 1 · 32 + 1 · 33 + · · · = [. . . 1112.]3

An interesting note: 1/2 is a 3-adic integer, which we can see from its 3-adic expansion
above as it contains no digits left of the point, but 1/2 ̸∈ Z.

Now we have the tools to recognize when the canonical p-adic expansion of a number
represents a real integer or rational! Compare this to the real numbers where we can recognize
an integer by the infinite 0s to the right of their decimal point in their decimal expansion or
a rational by its eventually periodic decimal expansion.

4.6. A Geometric Comparison. The real numbers can neatly be represented on a number
line. For example, the real numbers

√
2 and −1.5 can be plotted on the following number

line:

−3 −2 −1 0 1 2 3

(
√
2)(−1.5)

and the distance, d(−1.5,
√
2) = | − 1.5 −

√
2|, between them is simply their Euclidean

distance on this line. Two points which are physically close on the line are close in terms
of their Euclidean metric. Additionally, solutions to any equation can be plotted on the
number line, so long as the equation has real solutions.

Example 4.7. The solutions to the equation: x2 = 2 can be plotted:

−3 −2 −1 0 1 2 3

(
√
2)(−

√
2)

However, this neat visual representation breaks down when we try to plot p-adic numbers
on a number line. For example, 84 and 3 are quite far away in terms of their Euclidean
metric, while p-adically: |84− 3|3 = 1/34. Quite small!

Another example: both |27|3 and |108|3 have the same value of 1/33. However they lie at
different points on the real number line.

How can we construct a tool to visualize the p-adic numbers (for some fixed p) and the
distances between them? Can we use it to plot p-adic solutions to equations? Yes!

By the definition of p-adic integer, we can see that the set of all p-adic integers

Zp = {x ∈ Qp | |x|p ≤ 1}

forms a closed disc of radius one in the metric space Qp (with the p-adic metric of course).
This is very different from the set of integers in R which are evenly spaced throughout the
real number line, instead of clustered in a disc near the origin!
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More generally, we can study open or closed balls in the metric space Qp. Let us define
the open p-adic disc centered at α ∈ Qp of radius p−n to be the open set:

B(α,
1

pn
) = {x ∈ Qp | d(x, α) <

1

pn
}.

The closed p-adic disc is its closure:

B(α,
1

pn
) = {x ∈ Qp | d(x, α) ≤ 1

pn
}.

The p-adic numbers have the following amazing property, which allows us to create a
totally different topological structure to visualize them!

Theorem 4.8. [Gou20, Thm 2.3.6(v)] Any two open p-adic discs are either disjoint or one
is contained entirely in the other.

This is very different from R. For example, the open balls B(0, 1) and B(1
2
, 1) are the

overlapping intervals (−1, 1) ∩ (−1
2
, 3
2
) = (−1

2
, 1).

Let’s see how these discs look in Q3. I created the following image with the software
GeoGebra:

The disc bounded by the orange circle represents the closed ball B(0, 1). Everything inside
this disc is a p-adic integer, that is, these numbers have no (non-zero) digits to the right
of the decimal. Notice that inside B(0, 1), there are three new discs — balls of radius 1/3
— each completely contained inside B(0, 1) but disjoint from each other. These discs are
centered at the p-adic integers [0.]3, [1.]3, and [2.]3, respectively. The disc closest to the top
represents all integers with a 0 as its d0 digit, then moving clockwise for digits d0 = 1 or
d0 = 2. Continuing in this fashion, there are three new discs inside each previous disc, of
radius 1/3n for increasing n. As an example, the disc bounded by the blue circle above
represents the closed ball of all 3-adic numbers:
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B([221.0]3,
1

27
)

Everything in this ball shares the first several 3-adic digits:

[. . . 221.0]3

The pattern replicates forever to create a fractal-like pattern covering Z3 (since we began
with the disc bounded by the orange circle B(0, 1)). If we were to zoom out, we’d see that
B(0, 1) is simply the top-most circle inside the disc of 3-adic numbers which all share the
common digit d−1 = 0.

If we continue the process forever, any p-adic number will be contained in a sequence of
discs with ever-shrinking radius, as a limit. To visualize when two p-adic numbers are close
to one another, instead of observing their Euclidean distance on a real number line, we note
how many discs they share in common!

5. Finding p-adic roots

Some equations such as f(x) = x2 − 2 = 0 have no rational solutions. However, the
real completion of Q does have solutions to this equation, namely x =

√
2. Do p-adic

solutions exist as well, for some fixed prime p? I.e. is there a p-adic number with digits
di ∈ {0, 1, ..., p− 1} such that

(d0 + d1 · p+ d2 · p2 + ...)2 = 2 + 0 · 5 + 0 · 52 + ...

To answer this question, we must examine f(x) mod p.

Example 5.1. Take p = 7 and let f(x) = x2 − 2.

To solve this congruence mod 7, we observe that 2 is a quadratic residue mod 7, meaning
there exists a ∈ Z such that a2 ≡ 2 mod 7. Indeed, f(3) = 32 − 2 = 9− 2 ≡ 0 mod 7. Does
the existence of a root mod 7 guarantee a solution mod higher powers of 7? The answer is
yes!

Theorem 5.2. Hensel’s Lifting Lemma. Let f(x) ∈ Zp[x] be a polynomial. For any fixed
a ∈ Zp such that f(a) ≡ 0 mod p and f ′(a) ̸≡ 0 mod p, there exists a unique α ∈ Zp such
that f(α) = 0 and α ≡ a mod p.

Proof. We will prove the following statement by induction on n:

S(n): There exists an ∈ Zp,

an = d0 + d1p+ d2p
2 + · · ·+ dn−1p

n−1

(where the dis are its canonical p-adic digits) such that

f(an) ≡ 0 mod pn and an ≡ a mod p.

If a root an ∈ Zp exists mod pn for all n, then by taking the limit as n → ∞, we will
obtain the true p-adic root α such that f(α) = 0.
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The base case for n = 1 follows if we let a1 = d0 equal the first p-adic digit of a from the
hypothesis. Thus a1 ≡ a and f(a1) ≡ 0 mod p. Now we want to show that S(n− 1) implies
S(n). Let an = an−1+dn−1p

n−1 for some unknown p-adic digit dn−1 ∈ {0, 1, . . . , p−1} which
we will solve for so that f(an) ≡ 0 mod pn. From S(n − 1), we know that f(an−1) ≡ 0
mod pn−1. Let f(x) =

∑m
k=0 ckx

k with coefficients ck ∈ Zp. Expanding out f(an) and using
the binomial theorem we get:

f(an) = f(an−1 + dn−1p
n−1)

=
m∑
k=0

ck(an−1 + dn−1p
n−1)k

= c0 +
m∑
k=1

ck(a
k
n−1 + kak−1

n−1dn−1p
n−1 + terms divisible by pn)

≡ f(an−1) + dn−1p
n−1f ′(an−1) mod pn

By inductive assumption, f(an−1) ≡ 0 mod pn−1, so f(an−1) = qpn−1. Hence:

f(an) ≡ qpn−1 + dn−1p
n−1f ′(an−1) mod pn

for some q ∈ {0, 1, . . . , p− 1}. This allows us to find dn−1 by solving:

q + dn−1f
′(an−1) ≡ 0 mod p

Note an−1 ≡ a mod p so f ′(an−1) ≡ f ′(a) ̸≡ 0 mod p. Thus:

dn−1 ≡
−q

f ′(an−1)
mod p

will satisfy f(an) ≡ qpn−1 + dn−1p
n−1f ′(an−1) ≡ 0 mod pn. Thus we have shown S(n) holds

for all n. Now let α =
∑∞

n=0 dnp
n. Note that f(α) = 0 because f(α) ≡ f(an) ≡ 0 mod pn

for all n. This proves the existence of α ∈ Zp. The uniqueness follows from the uniqueness
of the canonical expansion of α from Theorem 3.11. □

Hensel’s lemma allows us to lift certain solutions mod p to a p-adic solution, meaning we
have a solution to the congruence f(x) ≡ 0 mod pn for all n. Continuing Example 5.1, we
can see that the 7-adic integer:

3 = [3]7 = 3 + 0p+ 0p2 + . . .

satisfies the conditions of Hensel’s Lemma. Indeed: f(3) ≡ 0 mod 7 and f ′(3) = 2 · 3 ̸≡ 0
mod 7. Therefore, we can uniquely lift this solution to obtain the 7-adic solution:

α = 3 + 1 · 7 + 2 · 72 + · · · = [...213]7

Let’s illustrate how we computed this solution by using the p-adic version of Newton’s
Method outlined in the induction proof of Theorem 5.2 to find each next element of the
p-adic sequence. If an is a solution to the congruence f(x) ≡ 0 mod pn then

an+1 = an −
f(an)

f ′(an)
mod pn+1
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is a solution mod pn+1.

We start by letting a1 = 3 because f(3) ≡ 0 mod 7. To find a2 we compute:

3− f(3)

f ′(3)
= 3− 9

6
mod 72.

Since 9
6

mod 72 is congruent to −7 (because 9 and −42 lie in the same congruence class
mod 49), we get that a2 = 3− (−7) = 10.

Then:
a3 = 10− f(10)

f ′(10)
= 10− 98

20
mod 73

Since 98 ≡ −1960 mod 343, we get that 10− 98
20

≡ 10−(−98) ≡ 108 mod 343 so a3 = 108.
So the Cauchy sequence begins (3, 10, 108, . . . ), which if we write each element in base 7 we
get: (3, 3 + 1 · 7, 3 + 1 · 7 + 2 · 49, . . . ) = [. . . 213]7 = α.

Computing these 7-adic roots by hand as shown above is quite tedious, so I wrote a python
script to compute them for me; see appendix A. It takes integers a, p, and d as inputs to
compute the first d digits of the square root of a in the the p-adics. From this code we easily
compute the first 10 digits to be:

α = [. . . 6421216213]7

Using the discs as mentioned in section 4.6, we can graph this solution as such:

Each 7-adic digit of α determines the infinite sequence of nested discs containing α. For
each layer n, the disc closest to the top represents all 7-adic numbers with dn = 0 then going
clockwise, dn = 1, 2, . . . 6. Because α is a 7-adic integer, it lies in the disc of radius 1 (that
is, Z7), represented by the largest disc. Then, because d0 = 3, α lies in the 4th disc, shown
in blue, then d1 = 1 so α lies in the 2nd disc, and so on. Continuing infinitely, we see how
α lies in a series of nested discs.

Notice that f(x) mod 7 has two square roots. In addition to 3, we also have f(4) ≡ 0
mod 7, which we can lift to obtain:

β = [. . . 0245450454]
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again computed using my python script. Notice how β = −α (see Example 3.13).

Notice how f(x) = x2 − 2 has no rational solutions, yet we are able to find both a real
solutions (±

√
2) and 7-adic solution (α = [...213]7 = −β). What if no real solution exists?

Is it still possible to find a p-adic solution for some prime p? Let’s observe the following
example:

Example 5.3. Let f(x) = x2 + 1.

First, let’s try to find a 3-adic root. To do so, we need to solve the following congruence:

x2 = −1 ≡ 2 mod 3.

However, notice that 02 ≡ 0 mod 3, 12 ≡ 1 mod 3, and 22 ≡ 1 mod 3. We have exhausted
all the possible congruence classes modulo 3, hence there is no solution to the congruence
modulo 3. Thus it is impossible to find a 3-adic solution to Example 5.3.

Can we find a solution in the 5-adics instead?

f(x) ≡ x2 − 4 mod 5

Thus we obtain the solution f(2) ≡ 0 mod 5. Since f ′(2) ̸≡ 0 mod 5, we can applying
Theorem 5.2 and obtain a unique 5-adic root of f(x). Using my python script, I compute
the first 7 digits of the 5-adic solutions to be:

α = [. . . 2431212]5 and β = [. . . 2013233]5

We can begin to verify that these are the solutions by computing whether a partial sum up
to digit d3 is a solution mod 53:

(2 + 1 · 51 + 2 · 52 + 1 · 53)2 = 33124 ≡ −1 mod 53

and
(3 + 3 · 51 + 2 · 52 + 3 · 53)2 = 196249 ≡ −1 mod 53.

Why does there exist a 5-adic solution, but not a 3-adic solution? We can use this neat
trick to easily figure out when a p-adic root exists:

Corollary 5.4. Let f(x) = x2−a ∈ Z[x] and p be an odd prime such that p does not divide
a. Then there exists a p-adic root if and only if a is a quadratic residue mod p.

Proof. If a is a quadratic residue mod p then we can solve the congruence x2 ≡ a mod p.
Since p ̸= 2, then f ′(a) = 2a ̸≡ 0 mod p hence a root exists by Theorem 5.2. If there exists
a p-adic root, then there exists a solution mod pn for each n, so in particular, there exists a
solution mod p. □

My Python script could easily be adapted to solve any equations satisfying the hypotheses
of Hensel’s Lemma. If these conditions fail to hold, it could be further adapted to deploy
stronger theorems such as the following:

Theorem 5.5. [Kob84, p19] Let f(x) ∈ Zp[x]. If a ∈ Zp satisfies f(a) ≡ 0 mod p2d+1 and f ′(a) ≡
0 mod pd, but f ′(a) ̸≡ 0 mod pd+1, then there is a unique solution α ∈ Zp such that
f(α) = 0 and α ≡ a mod pd+1.
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6. Conclusion

A natural question which arises now is: can we define even more exotic norms beyond the
Euclidean and p-adic norms to complete Q? In short, no: the Euclidean and p-adic norms
are the only non-trivial norms on Q, meaning R and Qp are the only ways to complete Q in
which we obtain a complete metric space that is also a field [Gou20, Ostrowski]. Concepts
such as limits, convergence, continuity, and differentiation which all depend on the norm on
a complete metric space can be studied both in R and the p-adics.

The same way Pythagorus questioned the existence of irrationals, one might question, do
these exotic p-adic numbers really exist? In this paper we saw by shifting the way we think
of the distance between numbers that in fact they do! And if I had been around in 470 B.C.,
the mere writing of this paper would have probably had me drowned as well!

Acknowledgements. Thanks my MOC house friends for keeping me sane while struggling
with Python code, to Karen Smith for help with latex (especially bibtex), and to Professor
Jonathan Love for introducing me to p-adic numbers!
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Appendix A. Python Code

You can find my code on my GitHub (https://github.com/helenaheinonen/pAdicExploration).

https://github.com/helenaheinonen/pAdicExploration
https://github.com/helenaheinonen/pAdicExploration
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