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Abstract

The aim of this project is to give a brief overview of the Riemann zeta function and
to show one method used to calculate non-trivial zeros of the function on the critical line
at 1

2 . Bernhard Riemann hypothesized that all non-trivial zeros lie on this critical line. If
true, this has major implications about the distribution of prime numbers. The methods
discussed in this paper give numerical evidence, but not proof, to suggest the truth of this
hypothesis.

1 Zeta Function Background

1.1 Zeta Function Definitions

The Riemann Zeta function was originally defined by Dirichlet as the infinite series [4]:

ζ(s) =
∞∑
n=1

1

ns
(1)

By the p-series test, we see this is convergent for s > 1, s ∈ R. Euler was able to find another
way to define it [8]. He noted that:

ζ(s) =
∏
p

1

1− 1
ps

(2)

Where p ranges over all primes numbers. Bernhard Riemann used this as his point of departure
for his paper ”On Primes Less than a Given Magnitude” [8]. He noted that both definitions
were convergent for s ∈ C such that Re(s) > 1. He went on to prove that it can be extended
to C \ {1}. An adaptation of his proof, with some additional details provided by Jekel[4], is
given below.

Theorem 1. ζ(s) extends analytically to C \ {1}

One first considers the equation:∫ ∞
0

e−nzzs−1dz =
Π(s− 1)

ns
(3)

Where in this case Π is the pi-function defined as: Π(s) =
∫∞

0 e−zzsdz . Summing over n
in (3) and using the geometric series formula in the integral gives (where the exchange of
summation and integration is justified by convergence at endpoints):

Π(s− 1)
∞∑
n=1

1

ns
=

∫ ∞
0

e−zzs−1

1− e−z
dz =

∫ ∞
0

zs−1

ez − 1
dz

1



Next to consider is the integral:∫
γ

(−z)s−1dz

ez − 1
=

∫
γ

es(log(z)−πidz

ez − 1
(4)

Where γ is a closed, positively oriented curve such that γ encompasses zero but no other
discontinuity point of the integrand. Let the section of the curve surrounding 0 be a circle of
radius 0 < δ < 1. Then the absolute value of the parameterized integral around this portion
is: ∣∣∣∣∣

∫ 2π

0

es(log(δ)−iπ+iθ)

eδeiθ − 1
idθ

∣∣∣∣∣ ≤
∫ 2π

0

∣∣∣∣∣es(log(δ)−iπ+iθ)

eδeiθ − 1
i

∣∣∣∣∣ dθ ≤
∫ 2π

0

δ

eδ − 1
δRe(s)−1eπIm(s)dθ

We see that when Re(s) > 1, taking δ → 0 gives that the integral over this part of the curve
is 0. So we see that (4) becomes:

lim
δ→0+

(∫ ∞
δ

es(log(z)−πidz

ez − 1
+

∫ δ

∞

es(log(z)−πidz

ez − 1

)
= (eiπs − e−iπs)

∫ ∞
0

zs−1

ez − 1
dz

But from above we see this is exactly Π(s− 1)
∑∞

n=1
1
ns . Using this, as well as some manipu-

lations of the Π function, we can state the integral definition of ζ (Jekel, 2013):

ζ(s) =
Π(−s)

2πi

∫
γ

(−z)s−1dz

ez − 1
(5)

The integral converges on compact subsets of C because the growth of the numerator is
outpaced by the growth of the denominator for any s. With this, we see that the integral is
analytic. Therefore, the only possible poles of ζ(s) on C are where Π(−s) has poles, which
are at positive integers. However, since (5) agrees with (1) for Re(s) > 1 and converges for
these values, we conclude that the only pole of ζ(s) in C is 1 [4].

Riemann also notes that this shows that negative even integers are zeros [8]. These have
become known as the trivial zeros.

1.2 Motivation for Studying

Once defined for the complex plane, Riemann went on to define an analytic functional equa-
tion:

ξ(s) = Π(
s

2
)(s− 1)π−s/2ζ(s) (6)

for which ξ(s) = ξ(1 − s). I will merely reference Riemann’s proof and use the result[8].
The zeros of ξ correspond to zeros of ζ since Π has no zeros on C (which follows from the
proof that Γ has no zeros, found in section 2.2 of this paper). (2) shows that ζ(s) has no
zeros for Re(s) > 1. This implies that ξ has no zeros in this region either. However, since
ξ(s) = ξ(1 − s), we see ξ has no zeros for Re(s) < 0 either. Therefore, zeros of ξ and thus ζ
are contained in the region of the complex plane between 0 and 1. This is commonly known
as the critical strip. Riemann set s = 1/2 + ti and conjectured that ζ(t) had only real roots.
”And it is very probable that all roots are real. Certainly one would wish for a stricter proof
here; I have meanwhile temporarily put aside the search for this after some fleeting futile
attempts, as it appears unnecessary for the next objective of my investigation”[8]. This is the
translated statement of the Riemann hypothesis (RH). Many consider this to be one of the
most important unsolved problems in modern mathematics.
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Without going into too many details, Riemann goes on to define a function f(x):

f(x) = Li(x)−
∑
α

(Li(x
1
2

+αi) + Li(x
1
2
−αi)) +

∫ ∞
x

1

x2 − 1

dx

xlog(x)
+ log(ξ(0)) (7)

Where α ranges over roots of ξ(α) = 0 with Re(α) > 0. The derivative of this function ”gives
an approximating expression for the density of the prime number + half the density of the
squares of the prime numbers + a third of the density of the cubes of the prime numbers etc.
at the magnitude x” [8].

It is in this way that Riemann’s work, and the zeta function, are related to number theory.
With this we begin to see the motivation for studying ζ and ξ. His famous hypothesis is related
to the prime number theorem:

Theorem 2. Prime Number Theorem

π(x) ∼ x

log(x)
(8)

Where π(x) is the prime counting function defined as: π(x) =
∑

p<x 1. The prime number
theorem also gives a bound for the difference of these functions, using the bounds of the region
of non-trivial zeros [7]. If the Riemann hypothesis is true, it would give a tight bound on the
error term in this theorem. Assuming the hypothesis:

π(x) = Li(x) +O(
√
xlog(x)) (9)

[5]
The proof of this relies on the fact that, for non-trivial roots ρ of ζ(s), we have |xρ| = x1/2.

In particular, that all non-trivial roots ρ have real part 1/2. I will omit the proof and refer
the reader to chapter 4 of Jin’s paper[5]. This error term cannot be improved by much due
to known oscillations found by Littlewood [1].

This brings us to the reason for calculating zeros of the zeta function. Without proof, we
can only gather numerical evidence that points to the validity of the Riemann hypothesis,
and thus the validity of this tight approximation for π(x). This in turn is of interest due to
the importance of primes in various areas of mathematics and computer science.

2 Computation of Zeros

2.1 History

Mathematicians have been trying to find non-trivial zeros of ζ(s) for over a century. With
the evolution of computing technology, we can trace the increasing success of this numerical
verification. In addition, the algorithms designed to compute these zeros have improved over
the years. The table below lists some of the mathematicians who worked on this project and
the number of zeros they were able to calculate. A ”history of the RH verification on the first
n zeros” [3].
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Year n Author

1903 15 J. P. Gram

1914 79 R. J. Backlund

1925 138 J. I. Hutchinson

1935 1,041 E. C. Titchmarsh

1953 1,104 A. M. Turing

1956 15,000 D. H. Lehmer

1956 25,000 D. H. Lehmer

1958 35,337 N. A. Meller

1966 250,000 R. S. Lehman

1968 3,502,500 J. B. Rosser, J. M. Yohe, L. Schoenfeld

1977 40,000,000 R. P. Brent

1979 81,000,001 R. P. Brent

1982 200,000,001 R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter

1983 300,000,001 J. van de Lune, H. J. J. te Riele

1986 1,500,000,001 J. van de Lune, H. J. J. te Riele, D. T. Winter

2001 10,000,000,000 J. van de Lune

2003 250,000,000,000 S. Wedeniwski

This table is from the 2004 paper by X. Gourdon in which he explains his method for calcu-
lating the first 1013 zeros. He makes sure to note that all of these calculations have agreed
with Riemann’s hypothesis; that the calculations have verified it to some number of zeros[3].
While this is no rigorous proof, it does have implications in of itself. For example, one can
now say for that the tight error bound that results from the RH for π(x) is valid up to a
relatively large magnitude of x.

One caveat is that these numerical methods leave room for some errors. Whether it be
human error, computer bug or a result of imprecision, the lack of rigorous proof leaves room
for inaccuracies. However, with the advancements in computing one might expect to see
similar numerical verification for other conjectures.

2.2 The Hardy Function

We now introduce the Hardy Function:

Z(t) = π−it/2
Γ(1/4 + it/2)

|Γ(1/4 + it/2)|
ζ(1/2 + it) (10)

This is a very important equation for studying the zeros of ζ(s) on the critical line at 1/2 for
two major reasons[9]:

Proposition 1.

1. Z(t) = 0⇐⇒ ζ(1/2 + it) = 0

2. Z : R→ R

These give a convenient way to find zeros on the critical line because real valued functions
are much easier to evaluate, especially in terms of large scale computations. This greatly
simplifies the area in which an algorithm must search. In a way, it looks along the real line
and finds places where the Hardy function changes sign to determine if a zero can exist there.
We now look to prove these two, with some of the proofs adapted from van der Meer[9].
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We begin with 1. Note first that∣∣∣∣ Γ(1/4 + it/2)

|Γ(1/4 + it/2)|

∣∣∣∣ =
|Γ(1/4 + it/2)|
|Γ(1/4 + it/2)|

= 1

In addition
|π−it/2| = πRe(−it/2) = π0 = 1

Now, we look at |Z(t)|

|Z(t)| =
∣∣∣∣π−it/2 Γ(1/4 + it/2)

|Γ(1/4 + it/2)|
ζ(1/2 + it)

∣∣∣∣ = |π−it/2|
∣∣∣∣ Γ(1/4 + it/2)

|Γ(1/4 + it/2)|

∣∣∣∣ |ζ(1/2 + it)|

but since |π−it/2| =
∣∣∣ Γ(1/4+it/2)
|Γ(1/4+it/2)|

∣∣∣ = 1 we see

|Z(t)| = |ζ(1/2 + it)| (11)

Thus we have ζ(1/2 + it) = 0 =⇒ Z(t) = 0. We now look to show the reverse direction. It

is clear that π−it/2 = e
−it
2
log(π) is non zero for all t, as it lies on the unit circle. We just aim

to show Γ(1/4 + it/2) is non zero (as this ensures no asymptotes or other zeros of Z(t)). The
Gamma function is the extension of the factorial to the complex plane. For Re(s) > 0 it is
defined as Γ(s) =

∫∞
0 e−xxs−1dx. To prove that it has no zeros, it is sufficient to prove that

the reciprocal of this function is entire (holomorphic on the complex plane) which we will
show below. Note that this proof is done by the author (although he had to look up how to
use u-substitution again). Let’s start by proving the validity of the Weierstuass definition of
the Gamma function:

Γ(s) =
e−γs

s

∞∏
k=1

[
(1 +

s

k
)−1e

s
k

]
= lim

n→∞

e−γs

s

n∏
k=1

[
(1 +

s

k
)−1e

s
k

]
(12)

Where γ is the Euler-Mascheroni constant defined as (
∑∞

k=1
1
k )− log(n). So we see continuing

from the line above:

= lim
n→∞

e−s((
∑n
k=1

1
k

)−log(n))

s

n∏
k=1

[
(1 +

s

k
)−1e

s
k

]
= lim

n→∞

eslog(n)

se(s
∑n
k=1

1
k

)∏n
k=1(1 + s

k )e
−s
k

Now taking the product of the e terms out of the product notation:

lim
n→∞

eslog(n)

se(s
∑n
k=1

1
k

)e(−s
∑n
k=1

1
k

)∏n
k=1(1 + s

k )
= lim

n→∞

ns

s
∏n
k=1(1 + s

k )

multiplying by n!/n!:

lim
n→∞

ns

s
∏n
k=1(1 + s

k )

n!

n!
= lim

n→∞

nsn!

s
∏n
k=1(k + s)

= lim
n→∞

nsn!∏n
k=0(k + s)

(13)

So we continue by showing this agrees with Γ(s) =
∫∞

0 e−xxs−1dx. First consider:

lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1dx (14)

Since the integral in our first definition of gamma converges for Re(s) > 1, we see the inte-
grand is measurable. In addition,

(
1− x

n

)
xs−1 is dominated by e−xxs−1. Thus, by Lebesgue

dominated convergence theorem, we have:

lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1dx =

∫ ∞
0

lim
n→∞

(
1− x

n

)n
xs−1dx =

∫ ∞
0

e−xxs−1dx
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So we see (14) agrees with our definition of Gamma. Let’s show that (14) also agrees with
(13) and thus (12). We proceed by induction, showing for all n:∫ n

0

(
1− x

n

)n
xs−1dx =

nsn!∏n
k=0(k + s)

(15)

For the base case, n = 1:∫ 1

0
(1− x)xs−1dx =

(
xs

s
− xs+1

s+ 1

) ∣∣∣∣∣
1

x=0

=
1

s
− 1

s+ 1
=

1

s(s+ 1)

and we see the base case is proven. Now for the inductive step we assume (15) is true for
n− 1 and consider: ∫ n

0

(
1− x

n

)n
xs−1dx

Substituting u = x/n:

=

∫ 1

0
(1− u)n(nu)s−1ndu = ns

∫ 1

0
(1− u)nus−1du

Using integration by parts we see:

= ns
(

(1− u)nus

s
+ n

∫
(1− u)n−1us

s
du

) ∣∣∣∣∣
1

u=0

=
ns+1

s

∫ 1

0

(1− u)n−1us

s
du

Now subbing in v = (n− 1)u:

=
ns+1

s

∫ n−1

0

(
1− v

n− 1

)n−1( v

n− 1

)(s+1)−1 dv

n− 1

=
1

s

ns+1

(n− 1)s+1

∫ n−1

0

(
1− v

n− 1

)n−1

v(s+1)−1dv

Now, using our inductive hypothesis we have:

=
1

s

ns+1

(n− 1)s+1

(n− 1)s+1(n− 1)!∏n−1
k=0(k + s+ 1)

=
ns+1(n− 1)!

s
∏n
k=1(k + s)

=
nsn!∏n

k=0(k + s)

and so we see the inductive step holds. Thus (15) holds for all n ∈ N and:

=⇒ Γ(s) =

∫ ∞
0

e−xxs−1dx = lim
n→∞

∫ n

0

(
1− x

n

)n
xs−1dx = lim

n→∞

nsn!∏n
k=0(k + s)

=
e−γs

s

∞∏
k=1

[
(1 +

s

k
)−1e

s
k

]
So we see that the Weierstrauss definition for Γ is valid. If we now consider the reciprocal of
this:

seγs
∞∏
k=1

[
(1 +

s

k
)e

−s
k

]
(16)

We see that for s = 0 it is 0. Also if s = −n, n ∈ N, then when k = n s
k = −1. Thus

1 + −n
n = 0 and we see that (16) evaluates to 0 here too. If s is not a non-positive integer, it

is clear that (16) is non-zero. So we conclude that the non-positive integers are the only zeros
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of this function and are able to apply the Weierstrauss factorization theorem [6]. This gives
that the function is entire as needed. Since (16) is entire, it has no poles. Thus Γ(s) has no
zeros.

With this result, we see the reverse direction of 1 from the proposition is proven. We now
look to prove 2 by showing Z(t) = Z(t). This is adapted from van der Meer’s paper [9]. First
we will rewrite Z using the functional equation (6) defined by Riemann:

ζ(s) =
ξ(s)

Π( s2)(s− 1)π−s/2
=

ξ(s)
1
2s(s− 1)Γ(s/2)π−s/2

We let s = 1/2 + it and substitute this expression in for ζ(1/2 + it) in the definition of Z(t):

Z(t) = π−it/2
Γ(1/4 + it/2)

|Γ(1/4 + it/2)|
ξ(1/2 + it)

1
2(1/2 + it)(−1/2 + it)Γ(1/4 + it/2)π−(1/4+it/2)

=
1

|Γ(1/4 + it/2)|
ξ(1/2 + it)

1
2(1/2 + it)(−1/2 + it)π−1/4

=
−2

|Γ(1/4 + it/2)|
ξ(1/2 + it)

(1/4 + t2)π−1/4
(17)

The only possible source of non-real values for Z(t) is ξ(1/2 + it). Thus:

Z(t) = Z(t)⇐⇒ ξ(1/2 + it) = ξ(1/2 + it)

Let’s now show ξ(1/2 + it) = ξ(1/2 + it). This follows if ξ(1/2 + it) = ξ(1/2 + it) since
ξ(s) = ξ(1− s).

ξ(1/2 + it) = Π(1/4 + it/2) · (−1/2 + it) · π−(1/4+it/2) · ζ(1/2 + it)

By lemma 2.15 from the van der Meer paper[9]:

= Π(1/4 + it/2)(−1/2− it)π−(1/4+it/2)ζ(1/2 + it) = ξ(1/2 + it)

By Riemann’s result that ξ(s) = ξ(1− s):

= ξ(1/2− it) = ξ(1− (1/2− it)) = ξ(1/2 + it)

Thus we see ξ(1/2 + it) = ξ(1/2 + it) and it follows that Z(t) = Z(t). So the proposition is
proven. Also, from (17) we see that Z(t) is continuous since:

• The reciprocal of Γ is entire

• (1/4 + t2)π−1/4 6= 0∀t ∈ R

• ξ is analytic in the critical strip

With a better understanding of the Hardy function and the nice properties it has, we
can see why it is so useful in finding zeros of ζ. By looking for the change of signs on this
continuous real function we can find the zeros of the Riemann zeta function on the critical line
at 1/2. At first glance, this does not seem to be useful in verifying the Riemann hypothesis.
How can one be sure that in looking on this line one is finding all the zeros? An important
question that brings us to our next section.
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2.3 Algorithms

The way one can verify the RH for such large numbers of zeros is by developing algorithms
that can test for the existence of zeros. It is difficult for algorithms to search an area of the
complex plane so it is common to focus exclusively on the critical line at 1/2 using methods
such as evaluation of the Hardy function. However, Turing devised a method for ensuring
that all zeros in an area are found, given that ”enough” zeros in that area are found to begin
with [3].

It is known that for a critical line σ between 0 and 1 and 0 < t < T , the number of zeros
of ζ(σ + it) is:

N(t) = 1 +
θ(T )

π
+ S(T )

Where θ(x) =
∑

p≤x log(p), S(T ) = 1
πargζ(1

2 + it). Now, a Gram point gn is a solution > 7
to

θ(gn) = nπ

and a regular Gram point is one such that S(gn) = 0. ”One of the key point in RH verification
is the ability to find regular Gram points. Once regular Gram points are found, it suffices
to check that between them, the expected number of change of sign of Z(t) occurs, in order
to numerically check the RH in this zone” [3]. Turing’s method is slightly beyond this text.
Nonetheless, I will give a high level description paraphrased from Gourdon:

When searching for zeros of the Hardy function, one can find a sequence (hn) such that:

• (−1)nZ(hn + gn) > 0 (where gn is a gram point described above)

• (hn + gn) is increasing

• hn sufficiently small, zero when possible

If hn sufficiently close to hm = 0 for n near m, then gm is a regular gram point. Turing was
able to find a bound on S(gm) that when certain conditions were met, −2 < S(gm) < 2. The
paper by Gourdon claims that S(gm) must be an even integer and thus when −2 < S(gm) < 2,
S(gm) = 0, giving gm to be a regular gram point. By looking for regular gram points while
searching the Hardy function one can greatly improve the efficiency of verification algorithms
(as opposed to other methods that do not use the Hardy function to find regular Gram points).

It is in this way that Gourdon was able to verify the hypothesis for the first 1013 zeros. He
used the idea from the Odlyzko-Schönhage algorithm to evaluate the Hardy function efficiently
in a range of T ≤ t ≤ T + ∆ with ∆ = O(

√
T ). They define Z(t) in this interval as:

Z(t) =

k0−1∑
n=1

cos(θ(t)− tlog(n))√
n

+Re(e−iθ(t)F (t)) +
m∑

n=k1+1

cos(θ(t)− tlog(n))√
n

+R(t)

Where R(t) is the remainder term and F (t) is defined as:

F (t) = F (k0 − 1, k1, t) :=

k1∑
k=k0

1√
k
eitlog(k)

Much of the work goes into methods for evaluating F (t) efficiently so that zeros of Z(t) and
regular Gram points can be found quickly. The above overview is brief and provides a mere
glimpse into the work done by Gourdon and Patrick Demichel ”who managed the distribution
of the computation on several computers in order to make the RH verification on the first
1013 zeros possible” [3]. However, the reader might find the simple description sufficient to
illustrate how the Hardy function is put to use in major computations.
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2.4 Some Computations

Since the methods and results described above require a great deal of time and computing
power to implement, we set our sights a little lower when demonstrating computations. We
can plot the Hardy function in a relatively small domain and use software to search for a sign
change. This method will compute the zeros of the zeta function in this portion of the critical
line, but does not verify the Riemann hypothesis (as we are not implementing Turing’s or any
similar method for ensuring all zeros are calculated). To further reduce the area in which we
search, we can use the result from lemma 2.15 of van der Meer [9]:

ζ(1/2 + it) = ζ(1/2 + it)

So if zeta(1/2 + ix) = 0, x ∈ R then:

0 = ζ(1/2 + ix) = ζ(1/2 + ix)

and we get that zeros on the critical line come in conjugate pairs. So when we plot the Hardy
function, we can look for non-negative t and we will get zeros for negative t as well. Below is
a some code and the plot of the Hardy function it outputs, as well as a table containing the
location of zeros found on the plot. The code is:

import numpy as np
import matp lo t l i b . pyplot as p l t
# The next l i b r a r y conta in s the
# zeta ( ) , z e t a z e r o ( ) , and s i e g e l z ( ) f u n c t i o n s
from mpmath import ∗

mp. dps = 25 ;
mp. pre t ty = True

de f graph zeta ( r ea l , image name ) :
A, B, C = [ ] , [ ] , [ ]

f i g = p l t . f i g u r e ( )
ax = f i g . add subplot (111)

f o r i in np . arange ( 0 . 1 , 100 .0 , 0 . 1 ) :
f unc t i on = zeta ( r e a l + 1 j ∗ i )
f unc t i on1 = s i e g e l z ( i )
A. append ( abs ( func t i on ) )
B. append ( func t i on1 )
C. append ( i )

ax . g r id ( True )
ax . p l o t (C, A, l a b e l =’modulus o f Riemann zeta func t i on along \
c r i t i c a l l i n e , s = 1/2 + i t ’ , lw =0.8)
ax . p l o t (C, B, l a b e l =’Riemann−S i e g e l Z−funct ion , Z( t ) ’ , lw =0.8)
ax . s e t t i t l e (” Riemann Zeta func t i on − Re( s )=1/2”)
ax . s e t y l a b e l (”Z( t )” )
ax . s e t x l a b e l (” t ”)
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# Inc lude legend
l e g = ax . legend ( shadow=True )
# Edit f ont s i z e o f l egend to make i t f i t i n to chart
f o r t in l e g . g e t t e x t s ( ) :

t . s e t f o n t s i z e ( ’ small ’ )
# Edit the l i n e width in the legend
f o r l in l e g . g e t l i n e s ( ) :

l . s e t l i n e w i d t h ( 2 . 0 )
# Plot the z e r o e s o f ze ta

f o r i in range (1 , 3 0 ) :
ze ro = ze ta z e ro ( i )
ax . p l o t ( ze ro . imag , [ 0 . 0 ] , ” ro ”)

# save p l o t and pr in t that i t was saved
ax . s e t y l i m (−7 , 7)
p l t . s a v e f i g ( image name )
p r in t (” S u c c e s s f u l l y p l o t t ed %s ! ” % image name )
p l t . c l o s e ( )

graph zeta ( 0 . 5 , ”Z( t ) P lo t . png ”)

This code is provided by Daner Ferhadi’s GitHub page which has some open source meth-
ods for evaluating the Hardy function[2]. It outputs a graph of Z(t) with the red dots at zeros
(which by our work are also zeros of ζ(1/2 + it)). Note that one can extend the range we are
looking in by modifying the middle argument in np.arrange in line 17 and changing the range
of the for loop under the ”# Plot the zeros of zeta” comment. As is, it gives the plot below:

10



The following table is from the van der Meer paper which shows the zeros in the same
range as the plot above[9].

range of t zero range of t zero range of t zero

(10,20) 14.13472514 (51,55) 52.97032148 (78,80) 79.33737502
(20,23) 21.02203964 (55,58) 56.44624770 (80,83) 82.91038085
(23,30) 25.01085758 (58,60) 59.34704400 (83,85) 84.73549298
(30,32) 30.42487613 (60,64) 60.83177852 (85,88) 87.4252746
(32,35) 32.93506159 (64,66) 65.11254405 (88,90) 88.80911121
(35,40) 37.58617816 (66,68) 67.07981053 (90,93) 92.49189927
(40,42) 40.91871901 (68,70) 69.54640171 (93,95) 94.65134404
(42,45) 43.32707328 (70,75) 72.06715767 (95,97) 95.87063423
(45,49) 48.00515088 (75,76) 75.70469070 (97,100) 98.83119422
(49,51) 49.77383248 (76,78) 77.14484007

”Zeroes of Z(t) in the interval (0,100) calculated using Maple” [9].
This is a small glimpse into the world of calculating zeros of the zeta function. Our

evaluation of Z(t) is quite simple and inefficient compared to the modern methods used to
verify the RH for large magnitudes. Indeed, it does not even verify that these are the only
zeros in their respective areas of the critical strip (using methods such as Turing’s from the
last section). One may yet find it to be a satisfying exercise considering the work done above
to understand these simple computations.

3 Concluding Remarks

This project has explored the Riemann hypothesis and the numerical verification of it. Using
Z(t), we can simplify the problem to a continuous real function. The value of these computa-
tions is important for understanding the distribution of prime numbers and this is why it is of
concern to number theorists. This numerical verification is fascinating. It provides a unique
challenge of creating efficient ways to evaluate an intricate function as a form of evidence for
mathematical conjecture.

The intersection of computer science and pure mathematics here allows for constant im-
provements and interest for many fields of study. The RH is a Millennium Prize Problem and
will continue to attract the attention of many aspiring mathematicians with it’s complexity,
beauty, and consequences. One may find the overview in this paper to spark interest; the
author certainly has.
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