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Abstract

An introduction to the theory of integer partitions with a focus on generating functions.

1 Introduction

In 1740, french mathematician Philip Naude (1684-1747) raised the following question in a letter
to Leonard Euler (1707-1783) [4]. In how many ways can an integer n be represented as a sum of
integers? Euler subsequently discovered many new ideas and techniques to answer this question and
thus founded the theory of partitions. His main tool in studying partitions was generating functions
which is the focus of this short paper. By examining patterns in the first few values of the partitions
function, Srinivasa Ramanujan (1887-1920) discovered some beautiful congruence properties that we
will motivate. Norman Macleod Ferrers (1829-1903) discovered a useful ways of visualising integer
partitions known as Ferrer’s graph. This approach opens the door for elegant bijective proofs of
partition identities, but we won’t cover these in this paper. We will rather explore the power of
generating functions in studying partitions. Many famous mathematicians have made contributions to
the theory of integer partitions including Euler, Legendre, Ramanujan, Hardy, Rademacher, Sylvester,
Selberg and Dyson [3]. Thus, this paper only touches a tiny part of the field.
The proofs for propositions 2.1, 4.2, 4.4, 6.1 are original. The idea for the proof of section 5.3 is the
same as in [3] but the calculations are original. The code at the end of section 6 is original and can be
found here [1]. Finally, section 7 is original. The rest is mostly a reformulation of the relevant sections
in Integer Partitions by Andrews and Eriksson [3]. And section 6 is a reformulation of a paper by
Andrews’ [2].

1.1 Initial definitions

Definition 1. For λ1, λ2 ... λk ∈ N such that λ1 ≥ λ2 ≥ ... ≥ λk the multiset σ = [λ1, λ2, ..., λk] is a
partition of n if λ1 + λ2 + ...+ λk = n.

Definition 2. Let An = {σ : σ is a partition of n}.

Since σ is a multiset instead of a set, multiple λ’s may share the same value.

Definition 3. Let mult(λ) := “the number of λ’s in σ” for each λ ∈ σ.

We will also use the notation Σσ =
k∑
i=1

λi = n as explicitly writing out the λ’s will be helpful. Due to

the ordering of the λ’s, all permutations of σ are equivalent. The study of integer partitions explores
certain properties and relationships between partitions with different properties, such as σ with only
odd λ’s or σ’s where all λ’s have multiplicity 1. We are also interested in the number of partitions for
a given n, so the function p(n) = |An|.

2 Generating functions

The first goal we will explore is getting some expression for p(n). We start by breaking down An
into sets based on what the largest λ is in each partition.
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Definition 4. Let

Bm(n) := {σ ∈ An : max(σ) ≤ m} then let bm(n) := |Bm(n)| so p(n) = lim
m→∞

bm(n)

Bm(n)∗ := {σ ∈ An : max(σ) = m} then let bm(n)∗ := |Bm(n)∗| so bm(n) =

m∑
i=0

bm(n)∗

This type of sum hints at the fact that geometric series of the form S =
∞∑
k=0

qk will often appear. If

such a series converges then we have a very neat close form solution, S = 1
1−q . If we instead have a

partial sum then we get
N∑
k=0

qk = 1−qN+1

1−q . This motivates the use of generating functions.

Definition 5. For a sequence (ak) := {ak}∞k=1, we define its generating function as

G(ak)(q) =

∞∑
k=0

akq
k (1)

where q is a free variable such that the series converges.

In R we must have |q| < 1. The trick is that from a recursive definition of (ak), after expanding we
can get terms with G(ak)(q) on the right hand side. We can then solve for G(ak)(q) in terms of some

expression of k’s and the qk’s. Then, if we can rewrite this as G(ak)(q) =
∞∑
k=0

ckq
k, for some ck’s,

we must have ck = ak ∀k giving us the close form expression for (ak). We will therefore look at the
generating function of p(n). First we use the fact that p(n) = limm→∞ bm(n). So, we fix m and look
at

G(bm(n))(q) =

∞∑
n=0

bm(n)qn (2)

For m = 1, we need a partition σ of n such that for all λ’s, λ ≤ 1 so σ = [1, ..., 1] where we have n
one’s. So ∀n, we only have one option so bm(n) = 1 and we get

G(b1(n))(q) =

∞∑
n=0

1 · qn =
1

1− q
. (3)

For m = 2, using the notation Σσ = n we get

G(b2(n))(q) = q2︸︷︷︸
n=2

+ q2+1︸︷︷︸
n=3

+ q2+1+1 + q2+2︸ ︷︷ ︸
n=4

+ q2+1+1+1 + q2+2+1︸ ︷︷ ︸
n=5

+ q2+1+1+1+1 + q2+2+1+1 + q2+2+2︸ ︷︷ ︸
n=6

+...

= (q1 + q1+1 + q1+1+...) + (q2 + q2+1 + q2+1+1 + q2+1+1+...) + (q2+2 + q2+2+1 + q2+2+1...) + ...

= (q1 + q2 + ...) + q2(q1 + q2 + ...) + q4(q1 + q2 + ...) + ...

=
1

1− q
+

q2

1− q
+

q4

1− q
+ ...

=
1

1− q
· 1

1− q2

(4)

We claim that this pattern continues.

Proposition 2.1.

G(br(n))(q) =

r∏
j=1

1

1− qj
∀r ∈ N1 (5)
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Proof. We proceed by induction on r. Let

P (r) = “G(br(n))(q) =

r∏
j=1

1

1− qj
” (6)

we prove that P (r) = True ∀r ∈ N1.
Base case. r = 1. We just showed in equation (4) that P (1) = True
Induction Hypothesis. Suppose that for some k ∈ N1, P (k) = True.
Induction Step. We can also write the generating function as

G(bk(n))(q) =

∞∑
n=0

bk(n)qn =

∞∑
n=0

(
k∑

m=0

bm(n)∗

)
qn =

∞∑
n=0

k∑
m=0

bm(n)∗qΣσ

=

∞∑
n=0

k∑
m=0

bm(n)∗∑
i=0

qΣσ(i,n,m) (7)

where σ(i, n,m) is the i’th partition of Bm(n)∗. Because for each n we will have bk(n) copies of q. We
now consider the the k+ 1 case. So we are now allowed to use copies of k+ 1 to sum to n. So for every
qΣσ(i,n,m), since we are covering all integers, we now have, ql(k+1)+Σσ(i,n,m) ∀l ∈ N0. So

G(bk+1(n))(q) =

∞∑
l=0

∞∑
n=0

k∑
m=0

bm(n)∗∑
i=0

ql(k+1)+Σσ(i,n,m)

=

∞∑
l=0

ql(k+1)
∞∑
n=0

k∑
m=0

bm(n)∗∑
i=0

qΣσ(i,n,m)

=

∞∑
l=0

ql(k+1)G(bk(n))(q)

= G(bk(n))(q)

∞∑
l=0

(qk+1)l

=

 k∏
j=1

1

1− qj

 1

1− qk+1

=

k+1∏
j=1

1

1− qj

=⇒ P (k + 1) = True (8)

So by induction we are done.

If we take m→∞ then we get the generating function of p(n).

G(p(n))(q) = lim
m→∞

m∏
j=1

1

1− qj
=

∞∏
j=1

1

1− qj
(9)

3 Generating functions of restricted partitions

We now look at restricted partitions meaning a subset of An where all σ obey some condition.
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Definition 6. Let
p(n| some condition on σ) (10)

denote the number of partitions of n which obey the condition.

Our expression for G(p(n))(q) in (11) gives us a lot of information on the structure of the partitions.

G(p(n))(q) =

∞∏
j=1

(q0 + qj + q2j + ...)

= (q0 + q1 + q2 + ...)(q0 + q2 + q4 + ...)(q0 + q3 + q6 + ...)...

= (q0 + q1 + q1+1 + ...)(q0 + q2 + q2+2 + ...)(q0 + q3 + q3+3 + ...)... (11)

So for each n, after expanding this formula, the number of q’s in the expanded sum with an exponent
of n is precisely p(n). We now look at some restricted partitions.

3.1 Restricting the multiplicity of each λ

Consider the following restricted partitions.

p(n| mult(λ) = M) (12)

Each integer in the partition must appear exactly M times or not appear at all. We are therefore
restricted to

G(p(n| mult(λ)=M))(q) = (q0 + q1·M )(q0 + q2·M )(q0 + q3·M )...

=

∞∏
j=1

(1 + qjM )

(13)

Similarly, for
p(n| mult(λ) ≤M) (14)

we get

G(p(n| mult(λ)≤M))(q) = (q0 + q1 + q1+1 + ...+ q1·M )(q0 + q2 + q2+2 + ...+ q2·M )(q0 + q3 + q3+3 + ...+ q3·M )...

=

∞∏
j=1

(q0 + qj + q2j + ...+ qj·M )

=

∞∏
j=1

1− (qj)M+1

1− qj
(15)

We can generalize this restriction to control the multiplicity of each integer separately through a map,
f : N1 → N0 ∪ {∞}. Then

G(p(n| mult(λ)≤ f(λ)))(q) =

 ∞∏
j=1

f(j)<∞

1− (qj)f(j)+1

1− qj


 ∞∏

j=1
f(j)=∞

1

1− qj

 (16)

3.2 Restricting the λ’s in the partitions

Next we next look at restricting the allowed λ’s in the partition to a set S ⊆ N0. From our expansion
of G(p(n))(q), each 1

1−qj term means that all partitions with any number of λ = j will be included. So

to make a λ not appear in the partition, we simply remove the corresponding 1
1−qλ term. So

G(p(n|λ∈S))(q) =
∏
j∈S

1

1− qj
(17)
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Example 1. If S is a residue class [a]b, for a, b ∈ N then

G(p(n|λ∈[a]b))(q) =

∞∏
j=1
j∈[a]b

1

1− qj
=

∞∏
j=0

1

1− qbj+a
(18)

We can now express G(bm(n))(q) differently.

Definition 7. Let Sm := {a ∈ N0 : 1 ≤ a ≤ m}.

Then

G(bm(n))(q) = G(p(n|λ∈Sm))(q) =

m∏
j=1

1

1− qj
(19)

3.3 Restricting the total number of λ’s in the partitions

We now look at
p(n| |σ| = N) (20)

We can notice a pattern by first looking at G(p(n|mult(λ)=1, λ∈S3))(q). From (15) we get

G(p(n| mult(λ)=1, λ∈S3))(q) =

3∏
j=1

(1 + qj)

= 1 + q1 + +q2 + q3 + q1+2 + q1+3 + q2+3 + q1+2+3 (21)

To track the number of elements in each partition we track the number of times two qj ’s were multiplied.
We can track this by adding a variable z.

3∏
j=1

(1 + zqj) = z01 + z1q1 + z1q2 + z1q3 + z2q1+2 + z2q1+3 + z2q2+3 + z3q1+2+3 (22)

Since each exponent of q represents a σ, the exponent of z is |σ|. Generalizing this we get

G(p(n| mult(λ)=1, |σ|=m))(q, z) :=

∞∑
n=1

∞∑
m=1

p(n| mult(λ) = 1, |σ| = m)zmqn =

∞∏
j=1

(1 + zqj) (23)

Where this generating function has two variables, z and q. We can generalize this to the non restricted
partition. We get that

G(p(n, |σ|=m))(q, z) =

∞∏
j=1

1

1− zqj
. (24)

where we only consider the terms with a factor of zm.

3.4 Combining the restrictions

Finally, we can combine these different restrictions. For example

G(p(n)| mult(λ)≤ f(λ), λ∈S,|σ|=m))(q, z) =

 ∏
j∈S

f(j)<∞

1− (zqj)f(j)+1

1− zqj


 ∏

j∈S
f(j)=∞

1

1− zqj

 (25)
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4 Partition identities

We can notice that the generating functions of some restricted partitions are the same. In these cases
the number of partitions for each n must be the same. Here are some examples.

Proposition 4.1. p(n|λ ∈ [1]2) = p(n|mult(λ) = 1). This is known as Euler’s identity.

Proof.

G(p(n|mult(λ)=1))(q) =

∞∏
j=1

(1 + qj) =

∞∏
j=1

1− q2j

1− qj

=
1− q2

1− q
1− q4

1− q2

1− q6

1− q3

1− q8

1− q4
...

=
1

(1− q)(1− q3)(1− q5)...

=

∞∏
j=1

1

1− q2j−1

= G(p(n|λ∈[1]2))(q) (26)

A closely related and more general partition identity would be the following.

Proposition 4.2. p(n|mult(λ) < k) = p(n|λ /∈ [0]k)

Proof.

G(p(n|mult(λ)<k))(q) =

∞∏
j=1

1− (qj)k

1− qj

=
1− qk

1− q
1− q2k

1− q2

1− q3k

1− q3
...

=
∏
j=1
j /∈[0]k

1

1− qj

= G(p(n|λ/∈[0]k)(q) (27)

Proposition 4.3. p(n|mult(λ) < λ) = p(n|λ is not a perfect square)
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Proof. From our expression for the generating function of p(n| mult(λ) ≤M) we get that

G(p(n| mult(λ)<λ))(q) =

∞∏
j=1

1− (qj)j

1− qj

=
1− q1

1− q
1− q4

1− q2

1− q9

1− q3
...

=
1

(1− q2)(1− q3)(1− q5)(1− q6)...

=

∞∏
j=1

j not a perfect square

1

1− qj

= G(p(n|λ is not a perfect square))(q) (28)

Proposition 4.4. Let N ⊆ N such that ∀ a ∈ N, 2a /∈ N. Let M := {2ka | ∀a ∈ N, ∀k ∈ N0} then

p(n|λ ∈ N) = p(n|λ ∈M, mult(λ) = 1) (29)

Proof.

G(p(n|λ∈M,mult(λ)=1))(q) =

∞∏
j=1
j∈M

(1 + qj)

=
∏
a∈N

∞∏
k=0

(1 + q2ka)

=
∏
a∈N

∞∏
k=0

1− q2k+1a

1− q2ka

=
∏
a∈N

1− q21a

1− q20a

1− q22a

1− q21a

1− q23a

1− q22a
...

=
∏
a∈N

1

1− qa

= G(p(n|λ∈N))(q) (30)

5 Expression for p(n) in a few restricted cases

5.1 p(n|λ ∈ S1)

Clearly, ∀n the only option is 1+1+...+1 n times so p(n|λ ∈ S1) = 1.

5.2 p(n|λ ∈ S2)

Here mult(2) uniquely determines the partitions as for every different multiplicity of 2 we have a new
partitions. We have a partition for mult(2) = 0, mult(2) = 1, mult(2) = 2, ...,mult(2) = bn2 c. So

p(n|λ ∈ S2) =
⌊n

2

⌋
+ 1 (31)
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5.3 p(n|λ ∈ S3)

Here things get more complicated as a combination of 2’s and 3’s determine the partitions. We therefore
try to expand the generating function to get it in the following form

G(p(n|λ∈S3))(q) =
1

1− q
1

1− q2

1

1− q3
=

∞∑
n=0

cnq
n (32)

So that we can conclude, by the definition of the generating function, that p(n|λ ∈ S3) = cn ∀n. The
goal will be to use partial fractions to rewrite this as the sum of terms of the form (1− q)−a or 1

1−qa

for some integer a since these can be written as a series in q. We already know that 1
1−qa =

∞∑
k=0

qan.

For the other form, (1− q)−a, we find its Taylor series. The Taylor series of a function f(x) around q
is

f(x)|q =

∞∑
k=0

f (k)(0)

k!
qk (33)

For f(q) = (1− q)−a we have

f (1)(q) = a(1−q)−a−1 ; f (2)(q) = a(a+1)(1−q)−a−2 ; f (3)(q) = a(a+1)(a+2)(1−q)−a−3 (34)

Continuing the pattern we see that

f (k)(q) = a(a+ 1)(a+ 2)...(a+ k − 1)(1− q)−a−k =
(a+ k − 1)!

(a− 1)!
(1− q)−a−k (35)

So the Taylor series about q is then

(1− q)−a =

∞∑
k=0

(a+ k − 1)!

k!(a− 1)!
qk (36)

From Wolfram Alpha, we get equation this first line, equation (37). We then express it as the sum of
series.

1

1− q
1

1− q2

1

1− q3
=

q

9 (q2 + q + 1)
+

1

4q2 − 8q + 4
+

2

9q2 + 9q + 9
− 1

6q3 − 18q2 + 18q − 6

+
1

8q + 8
− 17

72q − 72
(37)

=
q
9 + 2

9

q2 + q + 1
+

1
4

(1− q)2
+

1
6

(1− q)3
+

1
8

q + 1
+

17
72

q − 1

=
1

4

∞∑
n=0

(2 + n− 1)!

n!(2− 1)!
qn +

1

6

∞∑
n=0

(3 + n− 1)!

n!(3− 1)!
qn +

1
8 (q − 1) + 17

72 (q + 1)

1− q2
+

1
9 (q + 2)(q − 1)2

1− q3

=
1

4

∞∑
n=0

(n+ 1)qn +
1

6

∞∑
n=0

(1 + n)(2 + n)

2
qn +

13q
36 + 1

9

1− q2
+

1
9

(
q3 − 3q + 2

)
1− q3

=
1

4

∞∑
n=0

(n+ 1)qn +
1

6

∞∑
n=0

(1 + n)(2 + n)

2
qn +

13

36

∞∑
n=0

q2n+1 +
1

9

∞∑
n=0

q2n +
1

9

∞∑
n=0

q3n+3 − 1

3

∞∑
n=0

q3n+1 +
2

9

∞∑
n=0

q3n

=

∞∑
n=0

qn
(
n+ 1

4
+

(n+ 1)(n+ 2)

12
+

13qn+1

36
+
qn+1

9
+
q2n+3

9
+
q2n+1

−3
+

2q2n

9

)

=

∞∑
n=0

qn
(

(n+ 3)2

12
− 1

3
+

13qn+1

36
+
qn+1

9
+
q2n+3

9
+
q2n+1

−3
+

2q2n

9

)
(38)
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From here our goal is for the large term in the parenthesis to be some integer that depends on n. We
have |q| < 1 and p(n) > 0 =⇒ 0 ≤ q < 1 =⇒ 0 ≤ qn < 1 ∀q, n.

ε(n) := −1

3
+

13qn+1

36
+
qn+1

9
+
q2n+3

9
+
q2n+1

−3
+

2q2n

9
≤ −1

3
+

13

36
+

1

9
+

1

9
− 0 +

2

9
=

17

36
(39)

We have that (n+3)2

12 + ε(n) ∈ N so since ε(n) ≤ 17
36 <

1
2 , we get that (n+3)2

12 + ε(n) =
[

(n+3)2

12

]
where

[x] denotes the closest integer to x. So

G(p(n|λ∈S3))(q) =

∞∑
n=0

[
(n+ 3)2

12

]
qn

⇐⇒ p(n|λ ∈ S3) =

[
(n+ 3)2

12

]
(40)

6 Euler’s Pentagonal Number Theorem

Here we will prove a relation between partitions and pentagonal numbers with the use of generating
functions. The pentagonal numbers are illustrated in Figure 1.

Figure 1: Illustration of the first four pentagonal numbers [2]. They are 1, 5, 12 and 22. In general

they are given by n(3n−1)
2 .

First we define the following function.

Definition 8.

f(x, q) := 1−
∞∑
j=1

(1− xq)(1− xq2)(1− xq3)...(1− xqj−1)xj+1qj

= 1−
∞∑
j=1

(
j−1∏
m=1

(1− xqm)

)
xj+1qj (41)

And we also define the finite version.

f(x, q)N := 1−
N∑
j=1

(
j−1∏
m=1

(1− xqm)

)
xj+1qj (42)

The following proposition will explain how this function is relevant to partitions.

Proposition 6.1.

f(1, q)N = 1−
N∑
j=1

(
j−1∏
m=1

(1− qm)

)
qj =

N∏
j=1

(1− qj) (43)

Where we recognise the RHS as the denominator for the generating function of p(n| λ ∈ SN ).
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Proof. We proceed by induction on N . Let

P (N) = “ f(1, q)N =

N∏
j=1

(1− qj) ” (44)

we prove that P (N) = True ∀N ∈ N1.
Base case. For N = 1 we get on the LHS: 1 − (1 − 0)q1 = 1 − q and on the RHS we get 1 − q. So
P (1) = True.
Induction Hypothesis. Suppose that for some k ∈ N1, P (k) = True.
Induction step. We get

1−
k+1∑
j=1

(
j−1∏
m=1

(1− qm)

)
qj = 1−

k∑
j=1

(
j−1∏
m=1

(1− qm)

)
qj −

(
k∏

m=1

(1− qm)

)
qk+1

=

k∏
j=1

(
1− qj

)
−

(
k∏

m=1

(1− qm)

)
qk+1

=

 k∏
j=1

(
1− qj

)(1− qk+1
)

=

k+1∏
j=1

(
1− qj

)
=⇒ P (k + 1) = True (45)

So by induction we are done.

Taking N →∞ we get that.

f(1, q) =

∞∏
j=1

(1− qj) (46)

From here we show that this function has a certain recursive like property.

Proposition 6.2.
f(x, q) = 1− x2q − x3q2f(xq), q) (47)

Proof. See [2] for the proof, it involves rearranging f(x, q).

By iterating f(x, q) we see that

f(x, q) = 1− x2q − x3q2f(xq), q)

= 1− x2q − x3q2(1− x2q3 − x3q5f(xq2), q)), q)

...

= 1 +

N−1∑
j=1

(−1)j(x3j−1q
j(3j−1)

2 + x3jq
j(3j+1)

2 )

+ (−1)N
(
x3N−1q

N(3N−1)
2 + x3Nq

N(3N+1)
2 f(xqN , q)

)
(48)

We can prove that the above expression is true.
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Proof. We proceed by induction on N . Let

P (N) = “ f(x, q) = 1 +

N−1∑
j=1

(
(−1)j(x3j−1q

j(3j−1)
2 + x3jq

j(3j+1)
2 )

)
+ (−1)Nx3N−1q

N(3N−1)
2 + (−1)Nx3Nq

N(3N+1)
2 f(xqN , q)) ” (49)

we prove that P (N) = True ∀N ∈ N1.
Base case. For N = 1 we get. f(x, q) = 1− x2q − x3q2f(xq, q) which is true. So P (1) = True.
Induction Hypothesis. Suppose for some k ∈ N1, P (k) = True.
Induction step. We get

f(x, q) = 1 +

k−1∑
j=1

(−1)j(x3j−1q
j(3j−1)

2 + x3jq
j(3j+1)

2 )

+ (−1)kx3k−1q
k(3k−1)

2 + (−1)kx3kq
k(3k+1)

2 f(xqk, q)

= 1 +

k−1∑
j=1

(−1)j(x3j−1q
j(3j−1)

2 + x3jq
j(3j+1)

2 )

+ (−1)kx3k−1q
k(3k−1)

2 + (−1)kx3kq
k(3k+1)

2 f(xqk, q)

− (−1)kx3k+2q
3k2+k+2)

2 − (−1)kx3k+3q
3k2+k+4

2 f(xqk+1, q)

= 1 +

k∑
j=1

(−1)j(x3j−1q
j(3j−1)

2 + x3jq
j(3j+1)

2 )

+ (−1)k+1x3k+2q
3k2+k+2

2 + (−1)k+1x3k+3q
3k2+k+4

2 f(xqk+1, q)

=⇒ P (k + 1) = True (50)

So by induction we are done.

Taking N →∞ we get

f(x, q) = 1 +

∞∑
j=1

(−1)j(x3j−1q
j(3j−1)

2 + x3jq
j(3j+1)

2 ) (51)

Since the other terms go to zero. We recognize the pentagonal numbers in the exponent of q. Now,
for x = 1 we get

f(1, q) = 1 +

∞∑
j=1

(−1)j(q
j(3j−1)

2 + q
j(3j+1)

2 ) :=

∞∑
j=0

ajq
j for aj =

{
(−1)j j(3j±1)

2 ∈ N0

0 otherwise
(52)

Using the generating function of two variables in equation (25) in combination with the generating
with the generating function for mult(λ) = 1 in equation (14) we have that

G(p(n,|σ|=m|mult(λ)=1))(q, z) =

∞∑
j=0

∞∑
m=0

p(n, |σ| = m|mult(λ) = 1)zmqj =

∞∏
j=1

(1 + zqj) (53)

So we see that for z = −1 we get our expression in equation (51). So m even =⇒ zm = 1 and
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m odd =⇒ zm = −1. By splitting the sum accordingly we get

G(p(n,|σ|=m|mult(λ)=1))(q, z) =

∞∑
j=0

∞∑
m=0

p(n| |σ| = m, mult(λ) = 1)(−1)mqj

=

∞∑
j=0

p(n| |σ| is even, mult(λ) = 1)qj −
∞∑
j=0

p(n| |σ| is odd, mult(λ) = 1)qj

= G(p(n| |σ| is even, mult(λ)=1))(q)−G(p(n| |σ| is odd, mult(λ)=1))(q)

=

∞∑
j=0

ajq
j for aj =

{
(−1)j j(3j±1)

2 ∈ N0

0 otherwise
(54)

So by definition of the generating function

p(n| |σ| is even, mult(λ) = 1)− p(n| |σ| is odd, mult(λ) = 1) =

{
(−1)j j(3j±1)

2 ∈ N0

0 otherwise
(55)

Which is known as the Euler’s pentagonal number theorem. This gives us a recursive way for calculating
p(n) since we have

G(p(n))(q) =

∞∑
j=1

p(n)qj =

∞∏
j=1

1

1− qj
=⇒

∞∏
j=1

(1− qj) ·
∞∑
j=1

p(n)qj = 1 (56)

So from equation (52) we get1 +

∞∑
j=1

(−1)j(q
j(3j−1)

2 + q
j(3j+1)

2 )

 ∞∑
j=1

p(n)qj = 1 (57)

Which gives

p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 7)− ...

+ (−1)jp(n− j(3j − 1)

2
) + (−1)jp(n− j(3j + 1)

2
)

+ ... = 0 (58)

Using a dynamic programming approach meaning that we store previous values of p(n) as we calculate,
we see that this formula for p(n) has a time complexity of just O(n3/2). This algorithm was coded in
Python and can be found here [1].

7 The Congruence classes of p(n)

We shift our interest to p(n) mod(k) for some integer k. For the first 10 primes we calculate which
congruence class each p(n) falls into for 1 ≤ n ≤ 1000. These 10 plots, one for each prime, are seen
below in Figure 2. Let pb := {0 ≤ n ≤ 10000 | p(n) ∈ [b]p} . We can see from the plots that for the
primes, p = 5, 7, 11 , there are more elements in p0 than for the other pb. These plots don’t give any
information on which values of n, from 1 to 10000, these seemingly extra values in p0 come from. But
by reducing the number of samples from 10000 to 100 or by taking a random sample of 1000 out of
10000 we get the similar plots (see [1]). This would indicate that these extra values of n ∈ p0 are
distributed evenly from 1 to 10000. Next we can look at how large |p0| − |pb| is for b 6= 0. We look
at how large this deviation is from the expected value of p0 if the distribution between congruence
classes was totally random. In this case we would expect 10000/5 = 2000, 10000/7 ≈ 1428, and
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Figure 2: Bar plot of the number of elements of p(n) for 1 ≤ n ≤ 10000 in each congruence class
mod p. Where p is one of the first 10 primes. Each plot is for a different prime p.

10000/11 ≈ 910 elements in each pb for p = 5, 7, 11. We notice that

|50| = 3611 ≈ 3600 = 2000 +
10000− 2000

5

|70| = 2744 ≈ 2652 ≈ 1428 +
10000− 1428

7

|110| = 1773 ≈ 1736 ≈ 910 +
10000− 910

11

This indicates that for p = 5, 7, 11 , |p0| = 10000
p + ∆p where ∆p is approximately the average amount

of additional elements in p0 if the other 10000− 10000/p elements were distributed evenly across the
p−1 congruence classes. If we assume that the extra values of n are evenly distributed from 1 to 10000,
this would indicate that when n is in a certain congruence class mod p, p(n) is always congruent to
0 mod p. We therefore make the following conjecture.

Conjecture 1. ∃ k5, k7, k11 ∈ N such that
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p(n | 5n+ k5) ≡ 0 mod 5

p(n | 7n+ k7) ≡ 0 mod 7

p(n | 11n+ k11) ≡ 0 mod 11

These end up being true for k5 = 4, k7 = 5, k11 = 6 and was first conjectured by Ramanujan. A proof
is given in [3] p81-87.
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