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Abstract

The aim of this paper is to provide an undergraduate friendly introduction to the
concept of Gröbner bases. After motivating the subject, we build a solid foundation be-
fore formally defining, proving the existence of, and providing the original Buchberger’s
algorithm to compute, said Gröbner basis. We conclude by briefly summarizing a few
applications.

1 Prerequisites
It is expected that the reader has completed an undergraduate course in ring theory and/or
is familiar with multi-variable polynomial ring concepts and results. We highlight a few of
these which are used directly in definitions and proofs.

Definition 1. Let K be a field (in more generality, K can be any commutative ring). A
monomial in the polynomial ring K[x1, ..., xn] is represented by cxα where c is an element of
K, x = (x1, ..., xn) and α = (a1, ..., an) in Zn

≥0. For example, x2y3.

Lemma 1. ([1]) Let I = ⟨xα | α ∈ S ⊆ Zn
≥0⟩ be a monomial ideal (ideal generated by

monomials) in K[x1, ..., xn]. Then, a monomial xβ is an element of I if and only if xα divides
xβ for some α in S.

Definition 2. A commutative ring with unity K is called Noetherian if and only if for every
increasing chain of ideals I1 ⊆ I2 ⊆ I3 ⊆ ... of K, there exists N in Z≥0 such that In = IN
for all n ≥ N .

We have an equivalent definition of Noetherian:

Definition 2. A commutative ring with unity K is called Noetherian if and only if every
ideal of K is finitely generated.

Theorem 1 (Hilbert Basis Theorem). ([2]) If K is a Noetherian ring then K[x] is a
Noetherian ring. Inductively, K[x1, ..., xn] is a Noetherian ring.

Proposition 1. ([2]) Every field is Noetherian.
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2 Introduction
In his 1965 Ph.D. thesis, Bruno Buchberger introduced the new concept of a Gröbner ba-
sis, named after his advisor Wolfgang Gröbner. He provided the Buchberger Algorithm to
compute them (the one we will state and prove in this paper) at the same time ([3]).

We acknowledge that many years earlier in 1913, Nikolai Günther of Russia made a similar
discovery; his work was published in Russian journals but ignored internationally until it was
recognized in the 1980s ([3]).

The Buchberger algorithm is motivated by what is known as the Ideal Membership Problem
(6) which asks: given a field K and an ideal I of K[x1, ...xn], how can we determine if f
in K[x1, ..., xn] is an element of I? We know that for a commutative ring, we can write
an element of I as a linear combination of the generators. Thus, as one would do in the
single variable case, it would be intuitive to divide our polynomial by the generators of I
simultaneously using the division algorithm for multi-variable polynomial rings (3), and if
the algorithm terminates with zero remainder, we have an element of I. Alas, we will show
in the following section that we run into several issues using this method. Namely, unlike
the division algorithm in one variable, the multi-variable division algorithm does not output
a unique remainder unless the order of divisors is fixed. Consequently, an element of I can
have a non-zero remainder. This dilemma says that zero remainder is sufficient for ideal
membership but not necessary. We are left to wonder: can we find a basis such that the
unique remainder is independent of divisor order, thus providing a sufficient and necessary
way to determine elements of I? Indeed! The Gröbner basis of I!

This relatively modern idea has led to many fascinating applications and discoveries in math-
ematics and science.

3 Ordering and Division Algorithm in K[x1, ..., xn]

In one variable, we are familiar with the terms degree of a monomial, and degree of a
polynomial. For example, 4x2 is a degree 2 monomial and 4x2+x+1 is a degree 2 polynomial
in Q[x]. How do these definitions change for multi-variable polynomials?

Let us consider the two variable case: x = (x, y). Suppose you have the monomials x2y and
xy2. Both have the same total degree (1 + 2 = 2 + 1 = 3). Which one would you define
as greater than the other? In fact, it depends on the definition of monomial ordering you
choose. We provide a few common examples of monomial orderings before outlining the
formal criteria.

Definition 3. (Lexicographic Order) Let α = (a1, ..., an), β = (b1, ..., bn) ∈ Zn
≥0. If α− β

has a positive leftmost non-zero entry, then we say the degree α is greater than the degree
β with respect to lexicographic ordering, abbreviated as α >lex β. We can equivalently say
that xα is greater than xβ as monomials.

Example. x > y > z since x = x1y0z0, y = x0y1z0, z = x0y0z1 and
(1, 0, 0) − (0, 1, 0) = (1,−1, 0), (0, 1, 0) − (0, 0, 1) = (0, 1,−1), i.e. we have alphabetical
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ordering.

Definition 4. (Graded Lex Order) Let α, β as above. If

|α| =
n∑

i=1

ai > |β| =
n∑

i=1

bi

or
|α| = |β| and α >lex β,

then we say α >grlex β.
|α| is denoted the total degree.

Example. We first notice that again we have alphabetical ordering of the variables.
Another example is x4y7z >grlex x4y2z3 since |(4, 7, 1)| = 12 > 9 = |(4, 2, 3)|.

Definition 5. (Graded Reverse Lex Order) Let α, β as above. If

|α| =
n∑

i=1

ai > |β| =
n∑

i=1

bi

or
|α| = |β| and the rightmost nonzero entry of α− β is negative,

then we say α >grevlex β.

Example. We have the same example as above: x4y7z >grevlex x4y2z3 because grevlex and
grlex both order by total degree first, but break ties in different ways.
Another example is (2, 3, 2) >grevlex (0, 0, 7) since (2, 3, 2)− (0, 0, 7) = (2, 3,−5).

Definition 6. We call > a monomial ordering on the set of monomials
{xα | x = (x1, ..., xn), α ∈ Zn

≥0} in K[x1, ..., xn] if it is a relation satisfying the following
conditions:
(i) > is a total (linear) ordering, i.e. exactly one of

xα > xβ, xα = xβ, xβ > xα

is true and the ordering in transitive.
(ii) If xα > xβ, γ ∈ Zn

≥0, then xα+γ > xβ+γ

(iii) > is a well-ordering, i.e. there exists a (not necessarily unique) minimal monomial.

From now on, > represents an arbitrary fixed monomial ordering. You may be wondering...
Do we have to impose an ordering? If we do not, then we also run into uniqueness of
remainder problems as mentioned in the introduction.

We need just a few more pieces of terminology before we have the foundation to discuss
Gröbner bases.

Definition 7. Let f =
∑n

i=1 cix
αi in K[x1, ..., xn] (without loss of generality, none of the αi

are equal, otherwise combine them). The leading term of f , LT (f) = ckx
αk , is such that

αk > αi for all i. ck is denoted the leading coefficient.
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Definition 8. As above, let f =
∑n

i=1 cix
αi be a polynomial in K[x1, ..., xn]. The leading

monomial of f is LM(f) = xαk such that αk > αi for all i.

Remark Note that we distinguish the leading monomial as the leading term without its
coefficient. This is different than the general definition of a monomial.

For the definition and proof of the division algorithm in K[x1, ..., xn], we reference [1] (chapter
2.3). The computation is easy to grasp by examples, which follow. Like normal division, we
have a divisor, dividend, quotient and remainder; what’s different is that we can have multiple
divisors and quotients. Take a peak at the example below to familiarize yourself with the
setup.

Essentially, we start by fixing a monomial ordering. This determines leading terms. Then,
we apply the division algorithm as we normally would in one variable to the top most divisor
(which we will call f1) and the dividend. That is, we ask, what can we multiply the leading
term of f1 by to get the leading term of the dividend? For example, xy can be multiplied by
x to get x2y below.

Dividing by f1 builds quotient one. If in any particular step we cannot divide by divisor one
(for example, xy cannot be multiplied by anything to get y2 below), we leave quotient one
empty, move to f2 and build quotient two, and so on. At each step we return to f1 and work
down the list.

If at any step we cannot divide the leading term by any of the divisors, that leading term
becomes the remainder of that step (bold below) and we continue the division by carrying
down the rest of the terms. At the end, we add the remainders of each step for a total
remainder.

As we will see in the coming examples, the choice of ordering can simplify or complicate
polynomial division in K[x1, ..., xn] (sometimes greatly). We also see that, unless order of
divisors is fixed, the remainder is not unique — even with a fixed ordering.

The following problems and the worked example in 4 are taken from [1], where additional
examples and exercises can be found, but worked out independently.

Example. Order of divisors matters. We use lex ordering in the following two divisions and
work in Q[x, y].

To begin, the polynomials are ordered (greatest monomial to the left). Step one is multiplying
xy−1 by x to get the leading term of the dividend. We write the product below the dividend
and subtract, and add x to quotient one.

q1=x
q2=

f1=xy−1
f2=y2−1

)
x2y + xy2 + y2

− (x2y − x)

xy2 + x+ y2

Step two is multiplying xy − 1 by y to get the leading term of the difference. We write the

4



new product below the first difference and subtract, and add y to quotient one. We encourage
the reader to follow through the remaining steps.

q1=x+y
q2=1

f1=xy−1
f2=y2−1

)
x2y + xy2 + y2

− (x2y − x)

xy2 + x+ y2

− (xy2 − y)

x + y2 + y

y2 + y
− (y2 − 1)

y + 1

1

We finish with remainder x+y+1.
We conclude that x2y + xy2 + y2 = (x+ y) · (xy − 1) + 1 · (y2 − 1) + x+ y + 1.

On the other hand, switching the order of divisors gives

q1=x+1
q2=x

f1=y2−1
f2=xy−1

)
x2y + xy2 + y2

− (x2y − x)

xy2 + x+ y2

− (xy2 − x)

2x + y2

y2

− (y2 − 1)

1

with remainder 2x+1 — a different remainder!
We conclude that x2y+xy2+y2 can also be written as (x+1) · (y2−1)+x · (xy−1)+2x+1.

We now compute the second division again, this time using grlex ordering:

q1=x+1
q2=x

f1=y2−1
f2=xy−1

)
x2y + xy2 + y2

− (x2y − x)

xy2 + y2 + x
− (xy2 − x)

y2 + 2x
− (y2 − 1)

2x+1
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We highlight that we were able to continue dividing by d1 at row 5, unlike before, because
y2 >grlex 2x whereas 2x >lex y2.

4 Algorithm to Construct Gröbner Bases and Proof of
Existence

The preceding section brings to light the obstacle that the Ideal Membership Problem faces.
With a fixed ordering, we now construct a new basis from our original basis of I such that
division in any order of this new basis results in a unique remainder.

Definition 9. Let K be a field. Let I be an ideal of K[x1, ..., xn]. We say the subset
G = {g1, ..., gd} of I is a Gröbner basis (with respect to fixed ordering) for I if
⟨LT (g1), ..., LT (gd)⟩ = ⟨LT (I)⟩, where ⟨LT (I)⟩ is the ideal generated by the set of leading
terms of elements of I.

Remark 1. G generates I; that is, ⟨g1, ..., gd⟩ = I.

Proof. ⟨g1, ..., gd⟩ is contained in I since G is contained in I, by the properties of ideals.
Conversely, let f be an element of I. We can write f = p1g1 + ... + pdgd + r for some
remainder r using the division algorithm. Since f is in I, r = f − p1g1 + ... + pdgd is an
element of I. Assume r is non-zero. By the definition of Gröbner basis then, LT (r) is in
⟨LT (g1), ..., LT (gd)⟩, and by Lemma 1 some LT (gi) divides LT (r). But this contradicts that
r is the smallest remainder, thus r must be zero, and f is in ⟨g1, ..., gd⟩.

Remark 2. Note that by 1, since K is a field, K is Noetherian, and thus K[x1, ..., xn] is
Noetherian. Hence, every ideal in K[x1, ..., xn] is finitely generated. The existence of this
generating set is what we will eventually build a Gröbner basis from. A Gröbner basis is a
specific kind of basis, and in fact is more of a spanning set unless minimal, and non-unique
unless reduced 5.

Definition 10. Let xα, xβ be monomials. Let lcm (xα, xβ) = xγ, γ = (c1, ...cn)
and ci = max{ai, bi}. We define the S − polynomial: S(f, g) = xγ

LT (f)
· f − xγ

LT (g)
· g

where xγ = lcm (LM(f), LM(g)).

Theorem 2 (Buchberger’s Criterion). Let I be an ideal of K[x1, ..., xn] such that

I = ⟨g1, ...gd⟩. Then G = {g1, ..., gd} is a Gröbner basis if and only if S(gi, gj)
G
= 0 for all

i, j in {1, ..., d}, where S(gi, gj)
G

denotes the remainder of S(gi, gj) divided by G.

Proof. (⇐:) We need to show that ⟨LT (g1), ...LT (gd)⟩ = ⟨LT (I)⟩.

⟨LT (g1), ...LT (gd)⟩ ⊆ ⟨LT (I)⟩ is clear since gi in I implies LT (gi) is in ⟨LT (I)⟩ for all i
in {1, ..., d}. Thus ⟨LT (g1), ...LT (gd)⟩ ⊆ ⟨LT (I)⟩ since ⟨LT (I)⟩ is closed under finite linear
combinations and an arbitrary element of ⟨LT (g1), ...LT (gd)⟩ is written
f1LT (g1) + ...+ fdLT (gd) for fi in K[x1, ..., xn].
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It remains to show that ⟨LT (I)⟩ ⊆ ⟨LT (g1), ...LT (gd)⟩, and by the same reasoning as above,
it is sufficient to show that LT (I) ⊆ ⟨LT (g1), ...LT (gd)⟩. Let f be arbitrary in I and
LT (f) = anx

αn in LT (I). Write:

f = anx
αn + an−1x

αn−1 + ...+ a0 =
d∑

i=1

higi, hi ∈ K[x1, ..., xn]

We can write f this way since I = ⟨g1, ..., gd⟩.
By Lemma 1, we need to show that anx

αn is divisible by one of LT (gi), ..., LT (gd).
Let δ = max(deg(higi)). There are two cases:

1. δ = deg(f) = αn, the case with no cancellation in the sum of f .

2. δ > deg(f), the case with cancellation in the sum of f .

Let’s deal with case 1 first, then we will produce f =
∑d

i=1 h
′
igi such that

max(deg(h
′
igi)) = δ

′ is strictly less than δ, so we can inductively reduce to case 1.

Suppose f = h1g1 + ... + hdgd with deg(f) = δ and deg(higi) ≤ δ (at least one equality).
Then for some i in {1, ..., d}, LM(f) = LM(higi) = LM(gi)LM(hi). So in this case, LM(gi)
divides LM(f). This gives that LT (gi) divides LT (f) since LM(f) = xδ = LM(hi)LM(gi)
implies

anx
δ = anLM(hi)LM(gi)

=
an
bi
LM(hi) · biLM(gi)

:=
an
bi
LM(hi)LT (gi)

where bi ̸= 0 since LT (gi) ̸= 0. This gives case 1.

We now look at case 2. We will need a lemma which we state and prove now.

Lemma 2. If deg(pi) = δ for all i and deg(
∑n

i=1 pi) < δ, then there exists aij in K such that∑n
i=1 pi =

∑n
i,j aijS(pi, pj).

Proof. Write S(pi, pj) =
xδ

LT (pi)
· pi − xδ

LT (pj)
· pj where LT (pi) = bix

δ and LT (pj) = bjx
δ.

Fix j. Then,
n∑

i=1
i ̸=j

bi(
pi
bi

− pj
bj
) =

n∑
i=1
i ̸=j

(pi −
bi
bj
pj)

=
n∑

i=1
i ̸=j

pi −
pj
bj

n∑
i=1
i ̸=j

bi

=
n∑

i=1

pi
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where (pi
bi
− pj

bj
) = S(pi, pj) and

∑n
i=1
i ̸=j

bi = 0 since the sum has degree less than δ.

Continuing, we now write

f =
∑

deg(higi)>deg(f)

higi +
∑

deg(higi)≤deg(f)

higi

and since deg(higi) = δ implies deg(LT (hi)gi) = δ by well-ordering, we have

=
∑

deg(higi)=δ

LT (hi)gi +
∑

deg(higi)=δ

(hi − LT (hi))gi

+
∑

deg(f)<deg(higi)<δ

higi +
∑

deg(higi)≤deg(f)

higi

where the first sum must have degree less than δ and the second sum subtracts LT (hi), thus
has degree less than δ.

Using Lemma 2 above, there exists aij such that

∑
deg(higi)=δ

LT (hi)gi =
d∑
i,j

aij S(LT (hi)gi, LT (hj)gj)

=
d∑
i,j

aij (
xδ

LT (higi)
LT (hi)gi −

xδ

LT (hjgj)
LT (hj)gj )

=
d∑
i,j

aij (
xδ

LT (hi)LT (gi)
LT (hi)gi −

xδ

LT (hj)LT (gj)
LT (hj)gj )

=
d∑
i,j

aij (
xδ

xαij

xαijgi
LT (gi)

− xδ

αij

xαijgj
LT (gj)

)

=
d∑
i,j

xδ

xαij
aij S(gi, gj)

where we use that LT (LT (hkgk)) = LT (hkgk) and LT (hkgk) = LT (hk)LT (gk) by well-
ordering, and xαij = lcm(LM(gi)LM(gj)).

Now by assumption, S(gi, gj)
G

= 0, so S(gi, gj) =
∑d

k=1 pkgk with deg(pkgk) less than or
equal to deg(S(gi, gj)), which is strictly less than αij, where the first inequality follows from
the division algorithm and the second since S(gi, gj) cancels the leading term.
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Consequently we have

∑
deg(higi)=δ

LT (hi)gi =
d∑
i,j

xδ

xαij
aij

d∑
k=1

pkgk

=
d∑
i,j

d∑
k=1

xδ

xαij
pkgk

with degree strictly less than δ.

This concludes case 2 and the reverse direction.

(⇒:) We need to show that S(gi, gj)
G
= 0 for all (gi, gj) in G under the assumption that

G = {g1, ..., gd} is Gröbner.

S(gi, gj) =
xγ

LT (gi)
· gi− xγ

LT (gj)
· gj in I implies LT (S(gi, gj)) in ⟨LT (I)⟩ = ⟨LT (gi), ..., LT (gd)⟩,

so we can move to the next step of the division algorithm without remainder by dividing by
some LT (gk) by Lemma 1.

The next step is dividing S(gi, gj)−(
LT (S(gi,gj))

LT (gk)
·gk) (in I) by G. By same reasoning as above,

we can move to the next step.

The division algorithm terminates by well-ordering, thus we conclude that

S(gi, gj)
G
= 0.

This concludes the proof.

This constructs an algorithm (Buchberger’s Algorithm) to construct a Gröbner basis from
an original generating set G, by adding S(gi, gj)

G
̸= 0 to G, and repeating the process with

this newly defined G until S(gi, gj)
G
= 0 for all i, j ∈ {1, ..., n}.

Proposition 2. The Buchberger Algorithm terminates.

Proof. Let G = {g1, ...gd} be a potential Gröbner basis. If S(gi, gj)
G
̸= 0, let

G′ = G ∪ {S(gi, gj)
G
}. We note that

S(gi, gj) =
d∑

i=1

pigi + S(gi, gj)
G

implies S(gi, gj)
G

is in I. So G ⊊ G′. We also have that ⟨LT (G)⟩ ⊊ ⟨LT (G′)⟩, otherwise
S(gi, gj)

G
would not be the remainder. Suppose that the algorithm never terminates. This

would imply that
⟨LT (G)⟩ ⊊ ⟨LT (G′)⟩ ⊊ ⟨LT (G′′)⟩ ⊊ ...
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which contradicts that K[x1, ..., xn] is Noetherian.

Thus, the Buchberger Algorithm terminates.

Corollary 1. A Gröbner basis always exists.

Proof. Directly follows from the Buchburger Algorithm and Proposition 2.

We provide a working example of the construction of a Gröbner basis using grlex ordering.

Example. Let G1 = {x3 − 2xy, x2y − 2y2 + x}, f1 := x3 − 2xy, f2 := x2y − 2y2 + x, our
potential Gröbner basis. We test this hypothesis in grlex:

S(f1, f2) = y · (x3 − 2xy)− x · (x2y − 2y2 + x) = −x2 := f3

S(f1, f2)
G1

= f3 ̸= 0 (we omit this division calculation since the remainder occurs immedi-
ately)
Since S(fi, fj)

G1 is non-zero for some i, j, G1 is not a Gröbner basis.

Now let G2 = {f1, f2, f3}.
S(f1, f2)

G2
= 0 (due to above)

S(f1, f3) = (x3 − 2xy)− (−x) · (−x2) = −2xy := f4

S(f1, f3)
G2

= f4 ̸= 0 (we omit this division calculation since the remainder occurs immedi-
ately)
Similarly, since S(fi, fj)

G2 is non-zero for some i, j, G2 is not a Gröbner basis.

Continuing, let G3 = {f1, f2, f3, f4}
S(f1, f2)

G3
= 0 (as before)

S(f1, f3)
G3

= 0 (due to above)
S(f1, f4) = y · (x3 − 2xy)− (−1

2
x2) · (−2xy) = −2xy2

S(f1, f4)
G3 = 0 (we omit this division calculation since it is only one step)

S(f2, f3) = (x2y − 2y2 + x)− (−y)(−x2) = −2y2 + x := f5

S(f2, f3)
G3

= f5 ̸= 0 (we omit this division calculation since the remainder occurs immedi-
ately)

Let G4 = {f1, f2, f3, f4, f5}
S(f1, f2)

G4
= S(f1, f3)

G4
= S(f1, f4)

G4
= 0, as before.

By adding f5 we have S(f2, f3)
G4

= 0.

10



It remains to check that

S(f1, f5)
G4
, S(f2, f4)

G4
, S(f2, f5)

G4
, S(f3, f4)

G4
, S(f3, f5)

G4
, S(f4, f5)

G4
= 0.

Note that we do not need to check S(f2, f1) etc. since S(fi, fj) = −S(fj, fi), 1 ≤ i < j ≤ 5,
and -1 clearly does not affect divisibility as a unit.

S(f1, f5) = y2 · (x3 − 2xy)− (−1
2
x3) · (−2y2 + x) = −2xy + 1

2
x4

We now compute S(f1, f5)
G4 :

q1=
1
2
x

q2=−1
q3=0
q4=1
q5=1

f1
f2
f3
f4
f5

)
− 2xy + 1

2
x4

− (−2xy)
1
2
x4

− (1
2
x4 − x2y)

−x2y
− (−x2y + 2y2 − x)

−2y2 + x
− (−2y2 + x)

0

Note that this is not the only way to solve S(f1, f5)
G4 . Since we are free to choose the order

of divisors to compute the remainder, we see that we also get 0 remainder for

q4=1
q3=− 1

2
x2

...
f4
f3
...

)
− 2xy + 1

2
x4

− (−2xy)
1
2
x4

− (1
2
x4)

0

Similarly, one can show the remaining S(fi, fj)
G4

= 0, so we conclude that G4 is a Gröbner
basis for ⟨x3 − 2xy, x2y − 2y2 + x⟩ with respect to grlex.

5 Minimal and Reduced Gröbner Basis
We briefly state and discuss the concept of a minimal and reduced Gröbner basis.
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Definition 11. Let G = {gi, ..., gn} be a Gröbner basis. A minimal Gröbner basis is one such
that all leading coefficients equal 1 and is free of any gi such that LT (gi) is in ⟨LT (G\{gi})⟩.

Remark 3. G\{gi} is still a Gröbner basis since ⟨LT (G)⟩ = ⟨LT (G\{gi})⟩.

An ideal I does not have a unique minimal Gröbner basis, although given a minimal Gröbner
basis G, ⟨LT (G)⟩ forms the unique minimal basis of ⟨LT (I)⟩ ([1]).

However, for I ̸= {0}, I does have a unique reduced Gröbner basis for a given monomial
ordering ([1]):

Definition 12. A reduced Gröbner basis G is one such that all leading coefficients equal 1,
and for any gi in G, no monomial of gi is an element of ⟨LT (G\{gi})⟩.

6 The Ideal Membership Problem
How does the existence of a Gröbner basis solve the classical Ideal Membership problem
introduced in 2?

Theorem 3. Let G = {g1, ..., gd} be a Gröbner basis for an ideal I of K[x1, ..., xn]. Then the
remainder when dividing an element f of K[x1, ..., xn] by G is independent of the ordering
of gi.

Proof. The division algorithm gives existence of such a remainder. To show uniqueness, let
f = p1g1+ ...+ pdgd+ r1 = q1g1+ ...+ qdgd+ r2 in K[x1, ..., xn] have two distinct remainders.
This gives that 0 = p1g1 + ... + pdgd − q1g1 − ... − qdgd = r1 − r2 is in I. Thus, LT (r1 − r2)
is in ⟨LT (g1), ..., LT (gd)⟩ by the definition of Gröbner basis, and by Lemma 1 some LT (gi)
divides LT (r1 − r2). This is a contradiction since no terms of r1 nor r2 are divisible by any
LT (gi). We conclude that r1 − r2 must be zero.

Corollary 2. The remainder of f after dividing by Gröbner basis of I yields 0 if and only if
f is in I itself.

Proof. This is a direct result from Theorem 3, but we write a full proof.

(⇒:) Remainder 0 gives f = p1g1 + ... + pdgd for pi in K[x1, ..., xn] and gi in G, so f is an
element of I as written as a linear combination of elements of G.

(⇐:) (This is identical to Remark 1) We can write f = p1g1 + ... + pdgd + r for some
remainder r using the division algorithm. Since f is in I, r = f − p1g1 + ... + pdgd is an
element of I. Assume r is non-zero. By the definition of Gröbner basis then, LT (r) is in
⟨LT (g1), ..., LT (gd)⟩, and by Lemma 1 some LT (gi) divides LT (r). But this contradicts that
r is the smallest remainder, thus r must be zero.
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7 Some Applications in Number Theory
Theoretically, a Gröbner basis exists for any ideal in a polynomial ring over any field K. In
particular, this is true for algebraic number fields Q(α), for algebraic number α. The study
of algebraic number fields (finite extensions of the field Q) is central to algebraic number
theory, and is introduced in an undergraduate course in number theory. As we have seen,
Gröbner bases allow us to study ideals in polynomial rings over such fields.

Another classical application of Gröbner bases is in finding solutions to systems of polynomial
equations. For a system of polynomial equations, we can translate this system into an
equivalent system equating to zero. We can then study the ideal generated by polynomials
and the affine variety V(I):

Definition 13. For an ideal I of K[x1, ..., xn], we define

V(I) = {(a1, ..., an) ∈ Kn | f(a1, ..., an) = 0 ∀ f ∈ I}

Proposition 3. ([1]) If I = ⟨f1, ...fm⟩◁K[x1, ..., xn], then V(I) = V(f1, ..., fm).

By Proposition 3, solutions are independent of generating basis, so we can equivalently study
the Gröbner system of equations. Interestingly, Gröbner bases in lex ordering triangulate
(eliminate variables) such systems and can simplify calculations greatly (cf. [1]).

In a 2015 paper ([4]) on the very topic of Gröbner bases over algebraic number fields, a more
time efficient algorithm to compute Gröbner bases is proposed. It is well observed that the
efficiency of computing Gröbner bases via the Buchberger algorithm is highly dependent on
the field arithmetic, where algebraic number fields are relatively difficult.

In another paper ([5]) (2007), Gröbner bases are used to automate a variety of classic proofs
of number theoretic nature involving divisibility, congruence, and the notion of coprime, by
reduction to our original ideal membership problem.

A final example demonstrates the power of Gröbner bases by reducing computational time.

Definition 14. A Diophantine equation is a polynomial equation in two or more variables
with integer coefficients, where integer solutions are of interest.

Definition 15. Pell’s equation is a Diophantine equation of the form x2 −Ay2 = 1 where A
is a positive non-square integer. Again, integer solutions are of interest. This equation can
be generalized to x2 − Ay2 = N where N is a nonzero integer.

Theorem 2. ([6]) For any integers a > 1 and b > 1 such that a ̸= b, the system

ax2 − cz2 = 1

by2 − dz2 = 1

of generalized Pell’s equations has at most two integer solutions with x, y, z > 0.
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When showing a restriction on the set of solutions to a system of generalized Pell’s equations,
the 2008 paper ([6]) proposes a Gröbner basis method which requires half the classical method
time.
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