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Abstract

This paper outlines a proof of both the multiplicative property and recurrence
relation of the Ramanujan-Tau function. It also outlines a deterministic pattern
for the prime-power recurrence with proof. This gives rise to a general formula
such that if we have the values of tau for the primes dividing its input, we can
determine its value. The Tau function was defined in 1916 by Ramanujan and
it maps the natural numbers to the coefficients of the Weierstrass-Delta function,
which is a modular form. The function has a number of interesting number theoretic
properties, of which its multiplication is the main focus of this paper. In 1916,
Ramanujan observed the function to be multiplicative for relatively prime integers,
and observed a recurrence relation of prime powers that was proven my Mordell
in 1917. Note: this paper assumes elementary knowledge of modular forms and
complex analysis.

1 Introduction

In 1916 Ramanujan happened to be exploring the properties of the function:

x
∞∏
n=1

(1− xn)24 = x− 24x2 + 252x3 − 1472x4 + 4830x5 − 6048x6 − 16744x7 + ... (1)

when he noticed that the coefficients were multiplicative.
For example of we take the coefficients of x2 and that of x3 which are −24 and 252 ,

respectively, then multiplying them gives (−24)(252) = −6048 which happens to be the
coefficient of x6.

Ramanujan noticed this pattern held for any two integers if they were relatively prime,
and thus decided to define a function, namely the τ function, where τ(n) was defined
to be the value of the coefficient of xn. [1] The significance of his work was understood
by Ramanujan at the time as he was either not aware of the mathematics or they were
beyond his time.[4]

It turns out that (1) belongs to a class of functions called Modular forms. Modular
forms is a study native to Complex analysis, in which we define a complex function that is
somewhat invariant under the actions of the modular group SL2(Z). The entire modular
group can be generated by the 2 transformations corresponding to the function equations:

1. g(z + 1) = g(z)
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2. g(−1
z
) = gkf(z)

In essence a modular form of weight k is a complex function g which satisfies the two
equations above. (on top of additional complex analytic holomorphic and meromorphic
properties) [6]

The significance of the τ function its providing a pathway through which complex
analysis and Number theory, fields which were long believed to have little in common, are
in fact intertwined. The nature of Ramanujan’s work was rooted in his own passion for
mathematics. [4] is only fitting given that Ramanujan was a self-taught mathematician
living thousands of miles away to the relevant minds sitting atop the upper echelons
of academia. As a matter of fact, had it not been for his sending a letter to leading
mathematician G.H. Hardy, much of Ramanujan’s work would have gone unnoticed. [4]

Ramanujan’s work on the τ function has led to major developments on the Langlands
program, which is a project that was started in 1967 when Mathematician Robert Lang-
land sent Number theorist André Weil a letter containing a series of conjectures linking
harmonic analysis to number theory. [8] Number theoretic properties of τ(n), which is
implicitly defined by a complex function, is what characterizes its significance. Since Ra-
manujan was alive before this time (died in 1920), he was able to explore the properties
of τ(n) without pigeonholing it into any open problem at the time. In other words, he
was simply fascinated by it.

2 Preliminaries

2.1 The Weierstrass-Delta Function

2.1.1 Preliminaries for defining ∆(z)

• Let H = {ω ∈ C : Im(ω) > 0} denote the upper half plane

• let q : H −→ D = {z ∈ C : 0 < |z| < 1} be a holomorphic mapping given by
q(z) = e2πiz, we write q = q(z)

Remark 1. Since z = x+ iy ∈ H ⇐⇒ y > 0

q(z) = e2πiz = e2πixe−2πy ∈ D

2.1.2 Defining ∆(z):

For z ∈ H

∆(z) = q

∞∏
n=1

(1− qn)24, (2)

2.1.3 Expansion of ∆(z):

∆(z) = q−24q2+252q3−1472q4+4830q5−6048q6−16744q7+84480q8−113643q9+R10(q)
(3)

where Rn(q) denotes the remainder of the function starting from the n-th coefficient
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Elementary properties of ∆(z)

• ∆(z) is a modular form of weight 12 and satisfies the equations:

1. ∆(z) = ∆(z + 1)

2. ∆(−1
z
) = z12∆(z)

• ∆(z) is a cusp form, meaning it has no constant term in its Fourier expansion. [6]

2.2 The Ramanujan τ function

The definition of the τ : N −→ Z function follows implicitly and maps the n-th term to
its respective Fourier coefficient.

∆(z) =
∞∑
n=1

τ(n)qn =
∞∑
n=1

τ(n)e2πinz (4)

2.3 Properties of the Ramanujan τ function

Ramanujan observed the following about the function but was unable to prove them.
They were proven by Mordell in 1917, only one year later. [1] [2]

• Multiplicative Property: (Proof in section 3) For any m,n ∈ Z such that
(m,n) = 1 (Proof in [2]

τ(mn) = τ(m)τ(n) (5)

• A recurrence relation: (Proof in section 3) For any prime p and k ≥ 2 (Proof in
[2]

τ(pk) = τ(p)τ(pk−1)− p11τ(pk−2) (6)

2.4 Other important results about the tau function

• Ramanujan’s Conjecture For any prime p, |τ(p)| ≤ 2p
11
2 [1] (Proof by Deligne in

1974 [4])

3 Proofs

Theorem 2. Multiplicative Property: For any m,n ∈ Z such that (m,n) = 1

τ(mn) = τ(m)τ(n) (7)

I will break this theorem down into multiple lemmas that offer insight into the multi-
plicity of the τ function. This proof was adapted from [7] and [2].
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Let ∆ denote the modular discriminant function. Pick any prime p and Define:

f(z) = p12∆(pz) +

p−1∑
k=0

∆

(
z + k

p

)
(8)

Lemma 3. With f as in (8)
f(z + 1) = f(z)

Proof.

f(z +1) = p12∆(p(z +1)) +

p−1∑
k=0

∆

(
(z + 1) + k

p

)
= p12∆(pz + p) +

p−1∑
k=0

∆

(
(z + 1) + k

p

)
Since ∆ is a cusp form of weight 12, ∆(pz+p) = ∆(pz+p−1) = ∆(pz+p−2) = ... = ∆(pz)

⇒ f(z + 1) = p12∆(pz) +

p−2∑
k=0

∆

(
z + (k + 1)

p

)
+∆

(
(z + 1) + (p− 1)

p

)

⇒ f(z + 1) = p12∆(pz) +

p−1∑
k=1

∆

(
z + k

p

)
+∆

(
z + p

p

)
Modularity of ∆ implies that ∆

(
z+p
p

)
= ∆

(
z
p
+ 1
)
= ∆

(
z
p

)
So,

f(z + 1) = p12∆(pz) +

p−1∑
k=1

∆

(
z + k

p

)
+∆

(
z

p

)
= p12∆(pz) +

p−1∑
k=0

∆

(
z + k

p

)
= f(z)

Lemma 4. With f as in (8)

f(−1

z
) = z12f(z)

Proof.

f

(
−1

z

)
= p12∆

(
−p

z

)
+

p−1∑
k=0

∆

((
−1

z

)
+ k

p

)

⇒ f

(
−1

z

)
= p12∆

(
−1

z
p

)
+

p−1∑
k=0

∆

(
zk − 1

zp

)
= p12

(
z12

p12

)
∆

(
z

p

)
+

p−1∑
k=0

∆

(
zk − 1

zp

)

⇒ f

(
−1

z

)
= z12∆

(
z

p

)
+

p−1∑
k=0

∆

(
zk − 1

zp

)
= z12p12∆(z) +

p−1∑
k=0

∆

(
zk − 1

zp

)
Now we want to show that:

∆

(
zk − 1

zp

)
= z12∆

(
z + k

p

)
Recall that since ∆ is a modular form of weight 12 for any ω ∈ H, and a, b, c, d ∈ Z such
that ad− bc = 1

∆

(
aω + b

cω + d

)
= (cω + d)12∆(ω) (9)
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∆

(
zk − 1

zp

)
= ∆

(
aω + b

cω + d

)
, z = cω + d, and

z + k

p
= ω

We thus aim to show that

aω + b =
zk − 1

p
⇒ a

(
z + k

p

)
+ b =

az + (ak + bp)

p
=

zk − 1

p

We can make use of the fact that for 1 ≤ k ≤ p− 1 ⇒ gcd(p, k) = 1

⇒ ∃m, l ∈ Z such that lk +mp = 1

We set (−l)k + (−m)p = ak + bp = a(−d) + bc = −1 and that since such integers that

satisfy ∆
(
aω+b
cω+d

)
= (cω + d)12∆(ω) = ∆

(
zk−1
zp

)
= z12∆

(
z+k
p

)
So,

⇒ f

(
−1

z

)
= z12

(
p12∆(z) +

p−1∑
k=0

∆

(
z + k

p

))
= z12f(z)

Corollary 5. For any prime p and k ∈ Z+

τ(pk) = τ(p)τ(pk−1)− p11τ(pk−2)

Proof. With f as in (8), define

F (z) =
f(z)

∆(z)

It immediately follows that:

1. F (z + 1) = f(z+1)
∆(z+1)

= f(z)
∆(z)

= F (z)

2. F
(
−1

z

)
=

f(− 1
z )

∆(− 1
z )

= z12f(z)
z12∆(z)

= f(z)
∆(z)

= F (z)

We now rewrite our functions in terms of the Ramanujan τ -function.

∆(z) =
∞∑
n=1

τ(n)qn

f(z) = p12
∞∑
n=1

τ(n)qpn +

p−1∑
k=0

∞∑
n=1

τ(n)q
n
p e

2πikn
p

f(z) = p12
∞∑
n=1

τ(n)qpn +
∞∑
n=1

τ(n)q
n
p

p−1∑
k=0

e
2πikn

p

Let

φ(p, n) =

p−1∑
k=0

e
2πikn

p

If p | n, then e2πik
n
p = e2πim where m ∈ Z. It follows that e2πik

n
p = 1 ⇒ φ(p, n) = p

Otherwise, we know that the sum of the pth roots of unity is 0, namely φ(p, n) = 0
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It follows that

f(z) = p12
∞∑
n=1

τ(n)qpn + p
∞∑
l=1

τ(lp)q
lp
p = p12

∞∑
n=1

τ(n)qpn + p
∞∑
n=1

τ(pn)qn

Since f(z) = ∆(z)F (z), the degree one coefficient of f(z) must correspond to the constant
term of F (z) since ∆(z) is a cusp from. Furthermore since F (z) = F (z+1) and F (−1

z
) =

F (z) and since the transformations z 7→ z + 1 and z 7→ −1
z
generate the entire modular

group, we can conclude that F (z) is a weakly modular function of weight 0, and therefore
must be constant. So,

F (z) = pτ(p) (10)

This gives us the identity

τ(p)
∞∑
n=1

τ(n)qn = p11
∞∑
n=1

τ(n)qpn +
∞∑
n=1

τ(pn)qn (11)

Take the nth coefficient of q in the expression above and we get:

τ(p)τ(pk−1n) = p11τ(pk−2n) + τ(pkn)

taking n = 1 gives us the desired result.

We can now proceed with the rest of the theorem.
Proving the multiplicative property equates to proving the expression:

τ(pkn) = τ(pk)τ(n) (12)

If k = 0 then 12 holds trivially. Furthermore since p ≥ 2, equating the n-th coefficient
equates to

τ(pn) = τ(p)τ(n) (13)

Equating coefficients of (11)
To finish conclude the proof, we construct a recursive sequence on k ∈ Z+ given by:

µk = τ(pkn)− τ(pk)τ(n) (14)

As shown above µ0 = µ1 = 0, so suppose that µl = 0 for all 0 ≤ l ≤ k − 1
Using 11 we derive the following auxiliary equations which give us (6) for n = 1

1. τ(p)τ(pk−1n) = p11τ(pk−2n) + τ(pkn)

2. τ(p)τ(pk−1) = p11τ(pk−2) + τ(pk)

It follows that
µk−1 = τ(pk−1n)− τ(pk−1)τ(n) = 0

µk−2 = τ(pk−2n)− τ(pk−2)τ(n) = 0
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Proof. Some simple algebraic manipulation shows that

τ(pkn) = µk − τ(pk)τ(n) = τ(p)τ(pk−1n)− p11τ(pk−2n)

⇐⇒ µk = τ(p)τ(pk−1n)− p11τ(pk−2n) + τ(pk)τ(n)

⇐⇒ µk = [τ(p)τ(pk−1n)− p11τ(pk−2n)]− τ(n)[τ(p)τ(pk−1)− p11τ(pk−2)]

⇐⇒ µk = τ(p)[τ(pk−1n)− τ(pk−1)τ(n)] + p11[τ(n)τ(pk−2)− τ(pk−2n))]

⇐⇒ µk = τ(p)µk−1 − p11µk−2

⇐⇒ µk = τ(pkn)− τ(pk)τ(n) = 0

which proves that for any k ∈ Z+

τ(pkn) = τ(pk)τ(n)

Thus for any relatively prime m,n ∈ Z , we have

τ(mn) = τ(m)τ(n)

4 Original Work

We begin by generalizing the result of the multiplicative property with a simple corollary.

Corollary 6. For any n ∈ N such that n = pe11 pe22 ...pekk is the non-trivial prime decompo-
sition of n

τ(n) = τ(pe11 pe22 ...pekk ) =
k∏

j=1

τ(p
ej
j ) (15)

Proof. Clearly
τ(n) = τ(pe11 pe22 ...pekk )

Now without loss of generality, let n1 = pe22 ...pekk so by (2)

τ(n) = τ(pe11 n1) = τ(pe11 )τ(n1)

And hence

τ(n) = τ(pe11 pe22 ...pekk ) =
k∏

j=1

τ(p
ej
j )

Though the multiplicative properties of the τ function does not commonly appear in
this form, the primary focus tends to be on prime coefficients, as their values predict those
of larger coefficients.
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4.1 Structure of τ(pn)

Given our proof of the multiplicative property for relatively prime integers, we want to
explore the structure of τ(pk) for

Using the auxiliary equation:

τ(pk) = τ(p)τ(pk−1)− p11τ(pk−2) (16)

We compute values of for k ≥ 2, write Λ = τ(p) and q = p11

τ(p2) = (τ(p))2 − q = Λ2 − q

τ(p3) = τ(p)τ(p2)− qτ(p) = Λτ(p2)− qΛ = Λ3 − 2qΛ

τ(p4) = τ(p)τ(p3)− qτ(p2) = Λ(Λ3 − 2qΛ)− q(Λ2 − q) = Λ4 − 3qΛ2 + q2

From now on we write ζk = τ(pk). From (16) we have the recurrence relation for k ≥ 3.
Note ζ0 = τ(1) = 1

ζk = Λζk−1 − qζk−2 (17)

We use the following code to generate ζk for the first few k.

from sympy import symbols, collect

x, q = symbols(’x q’)

P = [0] * 26

P[1] = x

P[2] = x**2 - q

for k in range(3, 26):

P[k] = collect(x * P[k - 1] - q * P[k - 2], x)

for k in range(1, 26):

print(f"P_{k} =", P[k])

~

Which gives rise to the following polynomials

ζ0 = 1

ζ1 = Λ

ζ2 = −q + Λ2

ζ3 = −2qΛ + Λ3

ζ4 = q2 + −3qΛ2 + Λ4

ζ5 = 3q2Λ + −4qΛ3 + Λ5

ζ6 = −q3 + 6q2Λ2 − 5qΛ4 + Λ6
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ζ7 = −4q3 + 10q2Λ3 − 6qΛ5 + Λ7

ζ8 = q4 − 10q3Λ2 + 15q2Λ4 − 7qΛ6 + Λ8

ζ9 = 5q4Λ− 20q3Λ3 + 21q2Λ5 − 8qΛ7 + Λ9

ζ10 = −q5 + 15q4Λ2 − 35q3Λ4 + 28q2Λ6 − 9qΛ8 + Λ10

ζ11 = −6q5Λ + 35q4Λ3 − 56q3Λ5 + 36q2Λ7 − 10qΛ9 + Λ11

ζ12 = q6 − 21q5Λ2 + 70q4Λ4 − 84q3Λ6 + 45q2Λ8 − 11qΛ10 + Λ12

ζ13 = 7q6Λ− 56q5Λ3 + 126q4Λ5 − 120q3Λ7 + 55q2Λ9 − 12qΛ11 + Λ13

ζ14 = −q7 + 28q6Λ2 − 126q5Λ4 + 210q4Λ6 − 165q3Λ8 + 66q2Λ10 − 13qΛ12 + Λ14

and so on and so forth...

We can see that by highlighting the entries as we have above, a skew pattern of Pascal’s
triangle emerges. Furthermore, if we rewrite the coefficients as combinations in a specific
manner, a pattern begins to emerge with respect to the structure of τ(pk) in terms of
τ(p). This leads us to conjecture and prove the following result.

Lemma 7. For all n ≥ 2, p prime.

τ(pn) =

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−p11)k(τ(p))n−2k (18)

Proof. We proceed by induction. We know that for any prime p and for all m ≥ 2

τ(pm) = τ(p)τ(pm−1)− p11τ(pm−2)

So for n = 2

τ(p2) =
1∑

k=0

(
2− k

k

)
(−p11)k(τ(p))2−2k = (τ(p))2 − p11

so the equation holds for m = 2 Assume the induction hypothesis holds for all m ≤ n.
Then

τ(pn+1) =

=

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n−1
2

⌋∑
k=0

(
n− (k + 1)

k

)
(−p11)k+1(τ(p))n−2(k+1)+1

Case: n ≡ 0 (mod 2)

n ≡ 0 (mod 2) ⇒ ⌊n
2
⌋ = ⌊n+ 1

2
⌋ = ⌊n− 1

2
⌋+ 1

So τ(pn+1)

=

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n
2
⌋−1∑

k=0

(
n− (k + 1)

k

)
(−p11)k+1(τ(p))n−2(k+1)+1
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=

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n
2
⌋∑

k=1

(
n− k

k − 1

)
(−p11)k(τ(p))n−2k+1

= (τ(p))n+1 +

⌊n
2
⌋∑

k=1

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n
2
⌋∑

k=1

(
n− k

k − 1

)
(−p11)k(τ(p))n−2k+1

=

⌊n+1
2

⌋∑
k=0

(
(n+ 1)− k

k

)
(−p11)k(τ(p))(n+1)−2k

So the equation holds for even n

Case: n ≡ 1 (mod 2)

n ≡ 1 (mod 2) ⇒ ⌊n
2
⌋ = ⌊n− 1

2
⌋ = ⌊n+ 1

2
⌋ − 1

So τ(pn+1)

=

⌊n
2
⌋∑

k=0

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n
2
⌋∑

k=0

(
n− (k + 1)

k

)
(−p11)k+1(τ(p))n−2(k+1)+1

= (τ(p))n+1 +

⌊n
2
⌋∑

k=1

(
n− k

k

)
(−p11)k(τ(p))n−2k+1 +

⌊n+1
2

⌋∑
k=1

(
n− k

k − 1

)
(−p11)k(τ(p))n−2k+1

= (τ(p))n+1 +

⌊n
2
⌋∑

k=1

(
n− k + 1

k

)
(−p11)k(τ(p))n−2k+1 + (−p11)

n+1
2

=

⌊n
2
⌋∑

k=0

(
n− k + 1

k

)
(−p11)k(τ(p))n−2k+1 + (−p11)

n+1
2

=

⌊n+1
2

⌋∑
k=0

(
(n+ 1)− k

k

)
(−p11)k(τ(p))(n+1)−2k

So the equation holds for odd n and hence for all n ≥ 2, which concludes the proof.

Theorem 8. For any n ∈ N such that n = pe11 pe22 ...pekk

τ(n) =
k∏

j=1

⌊
ej
2
⌋∑

l=0

(
ej − l

l

)
(−p11j )l(τ(pj))

ej−2l (19)

Proof. The result follows immediately from (6) and (7)

The significance of this result is that it formalizes the multiplicative properties of
the Ramanujan tau function on its entire domain, given we know the value of prime
coefficients. It also extends the understood notion of the ”predictive power” of the prime
coefficients.
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5 Further Discussion of the τ function

Congruences The congruences of the tau function play a key role in understanding
the number theoretic properties of Modular forms. It turns out that the space of all cusp
forms of weight k denoted Sk is generated entirely by two Eisenstein series, which can be
generalized and broken down using Lipschitz’s formula. [6] Taking the Fourier expansion
of the Eisenstein series of weight k one sees that

Gk(z) =
1

2

∑
0̸=m,n∈Z

1

(mz + n)k
= ζ(k) +

2πi

(k − 1)!

∞∑
n=1

σk−1(n)q
n

where q = e2πiz, ζ is the Riemann-Zeta function and σk−1(n) is the k− 1’th power divisor
function. Gk is a modular form for even k ≥ 3, and there are no non-trivial modular
forms of odd weight. By writing ∆(z) in terms of Eisenstein series, one can postulate
that there may be a relationship between σm for some integers m and values of τ(n). One
particular example that was noticed by Ramanujan[1]

τ(n) ≡ σ11(n) mod 691

This can be seen by manipulating the modular forms E4 and E6 where

Ek(z) =
1

ζ(k)
Gk(z) = 1 +

2k

Bk

∞∑
n=1

σk−1(n)q
n

and Bk is the k-th Bernoulli number. We have the equations

E12(z) = 1 +
65520

691

∞∑
n=1

σ11(n)q
n and E3

4 − E2
6 = 1728∆

which gives us the congruence. (Note, 691 is prime) [3]

Riemann Hypothesis Another consequence of τ(n)’s multiplicative properties is its
associated L-function: [1]

Lτ (s) =
∞∑
n=0

τ(n)

ns

which has Euler product:

Lτ (s) =
∏

p - prime

1

1− p−sτ(p)− p11−2s

L-functions are a class of analytic functions on the complex plane that have a similar
property to the Riemann-Zeta hypothesis. Namely, that the function behaves similarly
on either side of a ”symmetry line” [5] that is hidden in the definition of the function.
Much like the Riemann Hypothesis, Ramanujan conjectured that all zeros of Lτ (s) have
real part equal to 6. [1] While our understanding of L-functions is not sufficient to grant us
answers to the Riemann Hypothesis yet. It is believed that expanding our understanding
of them by studying functions like Lτ can only help in our pursuit of a proof for the
Generalized Riemann Hypothesis which if true, will revolutionize our understanding of
prime numbers.[5]
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In researching the τ function, it appears that it has also played a major role in our
understanding of Elptic Curves, Representation theory, and it set the groundwork for
some of the results in respresentation theory that led Andrew Wiles to his famous proof
of Fermat’s Last theorem in 1995. [8] [5]

6 Conclusion

As discussed in the paper, Ramanujan’s discovery of the Tau function led to revolutionary
work in Mathematics. From the perspective of understanding the structure of the τ
function, the significance of creating a tangible representation of prime power expansions
is that it creates an alternate way for us to construct values of the output, specifically
how irreducible forms of the output interact with each other and build constructively
to reveal an overarching structure. In developing such a formula, many of the famous
results about the Tau function became more accessible and their link seemed to become
marginally clearer with the representation. Given the impact that Ramanujan’s work has
already had on two of the largest problems in mathematics, Fermat’s Last Theorem and
the Riemann Hypothesis, it suffices to say that expanding our understanding the structure
of the function will have a lasting impact on the field of mathematics as a whole.
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